如圖.直四棱柱ABCD―A1B1C1D1的高為3.底面是邊長(zhǎng)為4且∠DAB=60°的菱形.AC∩BD=O.A1C1∩B1D1=O1.E是O1A的中點(diǎn). (1)求二面角O1-BC-D的大小, (2)求點(diǎn)E到平面O1BC的距離. 查看更多

 

題目列表(包括答案和解析)

如圖,直四棱柱ABCD-A1B1C1D1的高為3,底面是邊長(zhǎng)為4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中點(diǎn).
(1)求二面角O1-BC-D的大。
(2)求點(diǎn)E到平面O1BC的距離.

查看答案和解析>>

如圖,直四棱柱ABCD-A1B1C1D1的高為3,底面是邊長(zhǎng)為4且∠DAB=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,則二面角O1-BC-D的大小為
60°
60°

查看答案和解析>>

如圖,直四棱柱ABCD-A1B1C1D1的高為3,底面是邊長(zhǎng)為4的菱形,且∠DAB=60°,AC∩BD=O,A1C1∩B1D1=O1,
(1)求證:平面O1AC⊥平面O1BD;
(2)求二面角O1-BC-D的大。

查看答案和解析>>

如圖,直四棱柱ABCD—A1B1C1D1的高為3,底面是邊長(zhǎng)為4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中點(diǎn).

(1)求證:平面O1AC平面O1BD

(2)求二面角O1-BC-D的大;

(3)求點(diǎn)E到平面O1BC的距離.

 

查看答案和解析>>

如圖,直四棱柱ABCD—A1B1C1D1的高為3,底面是邊長(zhǎng)為4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中點(diǎn).

(1)求證:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大;
(3)求點(diǎn)E到平面O1BC的距離.

查看答案和解析>>

一、選擇題(本大題8小題,共40分,每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合要求)

題號(hào)

1

2

3

4

5

6

7

8

答案

A

C

A

D

A

B

B

B

二、填空題:(本大題共須作6小題,每小題5分,共30分,把答案填寫在題橫線上).

9、        10、    11、   12、3

▲選做題:在下面三道題中選做兩題,三題都選的只計(jì)算前兩題的得分。

 13、3   ;14、! ; 15、

三、解答題(本大題共6小題,共80分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟)

16、(本小題滿分14分)解:(1)的內(nèi)角和

           …………………1分

   ……………5分

  …………………7分

(2)……………9分

…………12分

當(dāng)時(shí),y取得最大值        ………………………14分

17.(本小題滿分12分)

解:(1)3個(gè)旅游團(tuán)選擇3條不同線路的概率為:P1=…………3分

    (2)恰有兩條線路沒(méi)有被選擇的概率為:P2=……6分

    (3)設(shè)選擇甲線路旅游團(tuán)數(shù)為ξ,則ξ=0,1,2,3………………7分

    P(ξ=0)=       Pξ=1)=       

    Pξ=2)=      Pξ=3)= ………………9分

    ∴ξ的分布列為:

ξ

0

1

2

3

                        

   

………………10分

 

    ∴期望Eξ=0×+1×+2×+3×=………………12分

18.(本小題滿分12分)

  

    <menu id="vfghw"><strong id="vfghw"></strong></menu>

      (1)過(guò)O作OF⊥BC于F,連接O1F,

      ∵OO1⊥面AC,∴BC⊥O1F,

      ∴∠O1FO是二面角O1-BC-D的平面角,………………3分

      ∵OB=2,∠OBF=60°,∴OF=.

      在Rt△O1OF在,tan∠O1FO=

      ∴∠O1FO=60° 即二面角O1―BC―D為60°………………6分

      (2)在△O1AC中,OE是△O1AC的中位線,∴OE∥O1C

      ∴OE∥O1BC,∵BC⊥面O1OF,∴面O1BC⊥面O1OF,交線O1F.

      過(guò)O作OH⊥O1F于H,則OH是點(diǎn)O到面O1BC的距離,………………10分

      解法二:(1)∵OO1⊥平面AC,

      ∴OO1⊥OA,OO1⊥OB,又OA⊥OB,………………2分

      建立如圖所示的空間直角坐標(biāo)系(如圖)

      ∵底面ABCD是邊長(zhǎng)為4,∠DAB=60°的菱形,

      ∴OA=2,OB=2,

      則A(2,0,0),B(0,2,0),C(-2,0,0),O1(0,0,3)………………3分

      設(shè)平面O1BC的法向量為=(x,y,z),

      ,

      ,則z=2,則x=-,y=3,

      =(-,3,2),而平面AC的法向量=(0,0,3)………………5分

      ∴cos<,>=

      設(shè)O1-BC-D的平面角為α, ∴cosα=∴α=60°.

      故二面角O1-BC-D為60°. ………………6分

      (2)設(shè)點(diǎn)E到平面O1BC的距離為d,

          ∵E是O1A的中點(diǎn),∴=(-,0,),………………9分

      則d=∴點(diǎn)E到面O1BC的距離等于。……………12分

      19.(本小題滿分14分)解:易知   …………2分

      設(shè)P(x,y),則

         ………………4分

      ,

      ,即點(diǎn)P為橢圓短軸端點(diǎn)時(shí),有最小值3;

      當(dāng),即點(diǎn)P為橢圓長(zhǎng)軸端點(diǎn)時(shí),有最大值4 ……6分

      (Ⅱ)假設(shè)存在滿足條件的直線l易知點(diǎn)A(5,0)在橢圓的外部,當(dāng)直線l的斜率不存在時(shí),直線l與橢圓無(wú)交點(diǎn),所在直線l斜率存在,設(shè)為k

      直線l的方程為  ……………………8分

      由方程組

      依題意  …………10分

      當(dāng)時(shí),設(shè)交點(diǎn)C,CD的中點(diǎn)為R,

      又|F2C|=|F2D|

        …………13分

      ∴20k2=20k2-4,而20k2=20k2-4不成立,   所以不存在直線,使得|F2C|=|F2D|

      綜上所述,不存在直線l,使得|F2C|=|F2D|  …………14分

      20.(本小題滿分14分)解:(1),

         …………2分

      當(dāng) 上無(wú)極值點(diǎn)  …………3分

      當(dāng)p>0時(shí),令的變化情況如下表:

      x

      (0,)

      +

      0

      極大值

      從上表可以看出:當(dāng)p>0 時(shí),有唯一的極大值點(diǎn)  ………………7分

      (Ⅱ)當(dāng)p>0時(shí)在處取得極大值,此極大值也是最大值,

      要使恒成立,只需,      ∴

      ∴p的取值范圍為[1,+∞   …………………10分

      (Ⅲ)令p=1,由(Ⅱ)知,

      ,

         …………11分

        …………12分

       

      ∴結(jié)論成立   …………………14分

      21、解:(1)由題意得,解得,………………2分

                 ………………4分

      (2)由(1)得,         ①

        ②    ①-②得

       . ,………………6分

      設(shè),則由的增大而減小時(shí),恒成立,………………9分

            (3)由題意得恒成立

        記,則

      ………………12分

      是隨的增大而增大 

      的最小值為,,即. ………………14分

       


      同步練習(xí)冊(cè)答案