題目列表(包括答案和解析)
(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分。有時(shí)可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān)。
(1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,。當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科。
(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分7分,第2小題滿(mǎn)分7分.
已知△的周長(zhǎng)為,且.
(1)求邊長(zhǎng)的值;
(2)若(結(jié)果用反三角函數(shù)值表示).
(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分8分,第2小題滿(mǎn)分6分.
已知函數(shù), .
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域.
(本題滿(mǎn)分14分)本題共有2個(gè)小題,每小題滿(mǎn)分各7分.
如圖,在四棱錐中,底面為直角梯形,,垂直于底面,,分別為的中點(diǎn).
(1)求證:;
(2)求與平面所成的角.
(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分.
有時(shí)可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).
(1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.
一、填空題
1. 2. 3.2 4. 5. 10 6.i100 7.
8. 9. 10. 11. 12.
二、選擇題
13. 14.A 15.A. 16. D
三、解答題
17.由已知可得該幾何體是一個(gè)底面為矩形,高為4,頂點(diǎn)在底面的射影是矩形中心的四棱錐V-ABCD ;-----------------------------------------(3分)
(1) -------------(3分)
(2) 該四棱錐有兩個(gè)側(cè)面VAD. VBC是全等的等腰三角形,且BC邊上的高為
, ---------------------(2分)
另兩個(gè)側(cè)面VAB. VCD也是全等的等腰三角形,
AB邊上的高為 -------(2分)
因此 ------(2分)
18.
(1)由題意可得:=5---------------------------(2分)
由: 得:=314--------(4分)
或:,
(2)方法一:由:或------(1分)
或--------(2分)
得:0.0110-------------------------------------------------------------(1分)
方法二:由:
得:----------------------------------------------------------------(1分)
由:點(diǎn)和點(diǎn)的縱坐標(biāo)相等,可得點(diǎn)和點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng)---(1分)
即:------------------------------------------------------------(1分)
得:0.011-----------------------------------------------------------------------(1分)
(理科二種解法各1分)
19.解:(1)、函數(shù)的定義域?yàn)镽;----------------------------(1分)
當(dāng)時(shí);當(dāng)時(shí);當(dāng)時(shí);----------(1分)
所以,函數(shù)在定義域R上不是單調(diào)函數(shù),----------------------(1分)
所以它不是“類(lèi)函數(shù)” -----------------------------------------------------------(1分)
(2)函數(shù)在上單調(diào)遞增,--------------------------(2分)
要使它是“類(lèi)函數(shù)”,即存在兩個(gè)不相等的常數(shù) ,
使得同時(shí)成立,------------------------(1分)
即關(guān)于的方程有兩個(gè)不相等的實(shí)根,-------------------(2分)
,--------------------------------------------------------------(1分)
亦即直線(xiàn)與曲線(xiàn)在上有兩個(gè)不同的交點(diǎn),-(2分)
所以,----------------------------------------------------------------------------(2分)
20.解:
(1)
若,由,得數(shù)列構(gòu)成等比數(shù)列------------------(3分)
若,,數(shù)列不構(gòu)成等比數(shù)列--------------------------------------(1分)
(2)由,得:-------------------------------------(1分)
---------------------------------------------------------(1分)
----------------------------------------------(1分)
----(1分)
------------------------------------------------------------------(1分)
---------------------------------------------------------------------(1分)
(3)
由:
得:----------------------------------------------------(2分)
---------------------------------------------(1分)
當(dāng)時(shí)
所以,數(shù)列從第二項(xiàng)起單調(diào)遞增數(shù)列----------------------(2分)
當(dāng)時(shí),取得最小值為 -------------------------(1分)
21. 解:
(1)雙曲線(xiàn)焦點(diǎn)坐標(biāo)為,漸近線(xiàn)方程---(2分)
雙曲線(xiàn)焦點(diǎn)坐標(biāo),漸近線(xiàn)方程----(2分)
(2)
得方程: -------------------------------------------(1分)
設(shè)直線(xiàn)分別與雙曲線(xiàn)的交點(diǎn)、 的坐標(biāo)分別為,線(xiàn)段 中點(diǎn)為坐標(biāo)為
----------------------------------------------------------(1分)
得方程: ----------------------------------------(1分)
設(shè)直線(xiàn)分別與雙曲線(xiàn)的交點(diǎn)、 的坐標(biāo)分別為,線(xiàn)段 中點(diǎn)為坐標(biāo)為
---------------------------------------------------(1分)
由,-----------------------------------------------------------(1分)
所以,線(xiàn)段與不相等------------------------------------(1分)
(3)
若直線(xiàn)斜率不存在,交點(diǎn)總個(gè)數(shù)為4;-------------------------(1分)
若直線(xiàn)斜率存在,設(shè)斜率為,直線(xiàn)方程為
直線(xiàn)與雙曲線(xiàn):
得方程: ①
直線(xiàn)與雙曲線(xiàn):
得方程: ②-----------(1分)
的取值
直線(xiàn)與雙曲線(xiàn)右支的交點(diǎn)個(gè)數(shù)
直線(xiàn)與雙曲線(xiàn)右支的交點(diǎn)個(gè)數(shù)
交點(diǎn)總個(gè)數(shù)
1個(gè)(交點(diǎn))
1個(gè)(交點(diǎn))
2個(gè)
1個(gè)(,)
1個(gè)(,)
2個(gè)
1個(gè)(與漸進(jìn)線(xiàn)平行)
1個(gè)(理由同上)
2個(gè)
2個(gè)(,方程①兩根都大于2)
1個(gè)(理由同上)
3個(gè)
2個(gè)(理由同上)
1個(gè)(與漸進(jìn)線(xiàn)平行)
3個(gè)
2個(gè)(理由同上)
2個(gè)(,方程②
兩根都大于1)
4個(gè)
得:-------------------------------------------------------------------(3分)
由雙曲線(xiàn)的對(duì)稱(chēng)性可得:
的取值
交點(diǎn)總個(gè)數(shù)
2個(gè)
2個(gè)
3個(gè)
3個(gè)
4個(gè)
得:-------------------------------------------------------------------(2分)
綜上所述:(1)若直線(xiàn)斜率不存在,交點(diǎn)總個(gè)數(shù)為4;
(2)若直線(xiàn)斜率存在,當(dāng)時(shí),交點(diǎn)總個(gè)數(shù)為2個(gè);當(dāng)或 時(shí),交點(diǎn)總個(gè)數(shù)為3個(gè);當(dāng)或時(shí),交點(diǎn)總個(gè)數(shù)為4個(gè);---------------(1分)
上海市奉賢區(qū)2009年4月高考模擬考試
數(shù)學(xué)試題(文)
考生注意:
1.答卷前,考生務(wù)必在答題紙上將姓名、高考準(zhǔn)考證號(hào)填寫(xiě)清楚,并在規(guī)定的區(qū)域內(nèi)貼上條形碼.
2.本試卷共有21道試題,滿(mǎn)分150分.考試時(shí)間120分鐘.
一、填空題(本大題滿(mǎn)分60分)本大題共有12題,只要求在答題紙相應(yīng)題序的空格內(nèi)直接填寫(xiě)結(jié)果,每個(gè)空格填對(duì)得5分,否則一律得零分.
1.___________.
2.函數(shù)的定義域?yàn)開(kāi)_________ .
3.已知復(fù)數(shù),則____________.
4.的值為
5.的展開(kāi)式中的系數(shù)為 .
6.右圖給出的是計(jì)算的值的一個(gè)程序框圖,
其中判斷框內(nèi)應(yīng)填入的條件是__________.
7.計(jì)算:設(shè)向量,若向量與向量垂直,則實(shí)數(shù) .
8.若直線(xiàn)與圓沒(méi)有公共點(diǎn),則實(shí)數(shù)的取值范圍是___________.
9.在等差數(shù)列中,設(shè),對(duì)任意,有 則_____________.
|