題目列表(包括答案和解析)
已知數(shù)列的各項(xiàng)均為正數(shù),表示該數(shù)列前項(xiàng)的和,且對任意正整數(shù),恒有,設(shè)
(1) 求數(shù)列的通項(xiàng)公式;
(2) 證明:無窮數(shù)列為遞增數(shù)列;
(3)是否存在正整數(shù),使得對任意正整數(shù)恒成立,若存在,求出的最小值。
n |
i=1 |
1 |
an+i |
k |
10 |
(本小題滿分16分)
已知數(shù)列是各項(xiàng)均為正數(shù)的等差數(shù)列.
(1)若,且,,成等比數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)在(1)的條件下,數(shù)列的前和為,設(shè),若對任意的,不等式恒成立,求實(shí)數(shù)的最小值;
(3)若數(shù)列中有兩項(xiàng)可以表示為某個整數(shù)的不同次冪,求證:數(shù)列 中存在無窮多項(xiàng)構(gòu)成等比數(shù)列.
已知無窮等比數(shù)列{an}的首項(xiàng)、公比均為.
(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項(xiàng)的和;
(2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項(xiàng)的和為?若存在,求出滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請說明理由;
(3)試設(shè)計一個數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項(xiàng)和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.
一、填空題
1. 2. 3.2 4. 5. i100 6. 7. 2
8. 9. 10. 11. 12.
二、選擇題
13. 14.A 15.A. 16. D
三、解答題
17.
(1)由題意可得:=5----------------------------------------------------------(2分)
由: 得:=314---------------------------------------(4分)
或:,
(2)方法一:由:或------(1分)
或---------(1分)
得:0.0110-----------------------------------------------------------------(1分)
方法二:由:
得:-----------------------------------------------------------------(1分)
由:點(diǎn)和點(diǎn)的縱坐標(biāo)相等,可得點(diǎn)和點(diǎn)關(guān)于點(diǎn)對稱
即:------------------------------------------------------------(1分)
得:0.011-----------------------------------------------------------------------(1分)
18.(1),是等腰三角形,
又是的中點(diǎn),,--------------(1分)
又底面..----(2分)
-------------------------------(1分)
于是平面.----------------------(1分)
(2)過作,連接----------------(1分)
平面,
,-----------------------------------(1分)
平面,---------------------------(1分)
就是直線與平面所成角。---(2分)
在中,
----------------------------------(2分)
所以,直線與平面所成角--------(1分)
19.解:
(1)函數(shù)的定義域?yàn)?sub>;------------------------------------(1分)
當(dāng)時;當(dāng)時;--------------------------------------------------(1分)
所以,函數(shù)在定義域上不是單調(diào)函數(shù),------------------(1分)
所以它不是“類函數(shù)” ------------------------------------------------------------------(1分)
(2)當(dāng)小于0時,則函數(shù)不構(gòu)成單調(diào)函數(shù);(1分)
當(dāng)=0時,則函數(shù)單調(diào)遞增,
但在上不存在定義域是值域也是的區(qū)間---------------(1分)
當(dāng)大于0時,函數(shù)在定義域里單調(diào)遞增,----(1分)
要使函數(shù)是“類函數(shù)”,
即存在兩個不相等的常數(shù) ,
使得同時成立,------------------------------------(1分)
即關(guān)于的方程有兩個不相等的實(shí)根,--------------------------------(2分)
,--------------------------------------------------------------------------(1分)
亦即直線與曲線在上有兩個不同的交點(diǎn),-(1分)
所以,-------------------------------------------------------------------------------(2分)
20.解:
(1)
若,由,得數(shù)列構(gòu)成等比數(shù)列------------------(3分)
若,,數(shù)列不構(gòu)成等比數(shù)列--------------------------------------(1分)
(2)由,得:-------------------------------------(1分)
---------------------------------------------------------(1分)
----------------------------------------------(1分)
----(1分)
------------------------------------------------------------------(1分)
---------------------------------------------------------------------(1分)
(3)若對任意,不等式恒成立,
即:
-------------------------------------------(1分)
令:,當(dāng)時,有最大值為0---------------(1分)
令:
------------------------------------------------------(1分)
當(dāng)時
---------------------------------------------------------(1分)
所以,數(shù)列從第二項(xiàng)起單調(diào)遞減
當(dāng)時,取得最大值為1-------------------------------(1分)
所以,當(dāng)時,不等式恒成立---------(1分)
21. 解:
(1)雙曲線焦點(diǎn)坐標(biāo)為,漸近線方程---(2分)
雙曲線焦點(diǎn)坐標(biāo),漸近線方程----(2分)
(2)
得方程: -------------------------------------------(1分)
設(shè)直線分別與雙曲線的交點(diǎn)、 的坐標(biāo)分別為,線段 中點(diǎn)為坐標(biāo)為
----------------------------------------------------------(1分)
得方程: ----------------------------------------(1分)
設(shè)直線分別與雙曲線的交點(diǎn)、 的坐標(biāo)分別為,線段 中點(diǎn)為坐標(biāo)為
---------------------------------------------------(1分)
由,-----------------------------------------------------------(1分)
所以,線段與不相等------------------------------------(1分)
(3)
若直線斜率不存在,交點(diǎn)總個數(shù)為4;-------------------------(1分)
若直線斜率存在,設(shè)斜率為,直線方程為
直線與雙曲線:
得方程: ①
直線與雙曲線:
得方程: ②-----------(1分)
的取值
直線與雙曲線右支的交點(diǎn)個數(shù)
直線與雙曲線右支的交點(diǎn)個數(shù)
交點(diǎn)總個數(shù)
1個(交點(diǎn))
1個(交點(diǎn))
2個
1個(,)
1個(,)
2個
1個(與漸進(jìn)線平行)
1個(理由同上)
2個
2個(,方程①兩根都大于2)
1個(理由同上)
3個
2個(理由同上)
1個(與漸進(jìn)線平行)
3個
2個(理由同上)
2個(,方程②
兩根都大于1)
4個
得:-------------------------------------------------------------------(3分)
由雙曲線的對稱性可得:
的取值
交點(diǎn)總個數(shù)
2個
2個
3個
3個
4個
得:-------------------------------------------------------------------(2分)
綜上所述:(1)若直線斜率不存在,交點(diǎn)總個數(shù)為4;
(2)若直線斜率存在,當(dāng)時,交點(diǎn)總個數(shù)為2個;當(dāng)或 時,交點(diǎn)總個數(shù)為3個;當(dāng)或時,交點(diǎn)總個數(shù)為4個;---------------(1分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com