題目列表(包括答案和解析)
⊙O1和⊙O2的極坐標方程分別為,.
⑴把⊙O1和⊙O2的極坐標方程化為直角坐標方程;
⑵求經過⊙O1,⊙O2交點的直線的直角坐標方程.
【解析】本試題主要是考查了極坐標的返程和直角坐標方程的轉化和簡單的圓冤啊位置關系的運用
(1)中,借助于公式,,將極坐標方程化為普通方程即可。
(2)中,根據上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(I),,由得.所以.
即為⊙O1的直角坐標方程.
同理為⊙O2的直角坐標方程.
(II)解法一:由解得,
即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標方程為y=-x.
解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標方程為y=-x
某同學用《幾何畫板》研究拋物線的性質:打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點,度量點的坐標,如圖.
(Ⅰ)拖動點,發(fā)現(xiàn)當時,,試求拋物線的方程;
(Ⅱ)設拋物線的頂點為,焦點為,構造直線交拋物線于不同兩點、,構造直線、分別交準線于、兩點,構造直線、.經觀察得:沿著拋物線,無論怎樣拖動點,恒有.請你證明這一結論.
(Ⅲ)為進一步研究該拋物線的性質,某同學進行了下面的嘗試:在(Ⅱ)中,把“焦點”改變?yōu)槠渌岸c”,其余條件不變,發(fā)現(xiàn)“與不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應的正確命題;否則,說明理由.
某同學用《幾何畫板》研究拋物線的性質:打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點,度量點的坐標,如圖.
(Ⅰ)拖動點,發(fā)現(xiàn)當時,,試求拋物線的方程;
(Ⅱ)設拋物線的頂點為,焦點為,構造直線交拋物線于不同兩點、,構造直線、分別交準線于、兩點,構造直線、.經觀察得:沿著拋物線,無論怎樣拖動點,恒有.請你證明這一結論.
(Ⅲ)為進一步研究該拋物線的性質,某同學進行了下面的嘗試:在(Ⅱ)中,把“焦點”改變?yōu)槠渌岸c”,其余條件不變,發(fā)現(xiàn)“與不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應的正確命題;否則,說明理由.
某同學用《幾何畫板》研究拋物線的性質:打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點,度量點的坐標,如圖.
(Ⅰ)拖動點,發(fā)現(xiàn)當時,,試求拋物線的方程;
(Ⅱ)設拋物線的頂點為,焦點為,構造直線交拋物線于不同兩點、,構造直線、分別交準線于、兩點,構造直線、.經觀察得:沿著拋物線,無論怎樣拖動點,恒有.請你證明這一結論.
(Ⅲ)為進一步研究該拋物線的性質,某同學進行了下面的嘗試:在(Ⅱ)中,把“焦點”改變?yōu)槠渌岸c”,其余條件不變,發(fā)現(xiàn)“與不再平行”.是否可以適當更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應的正確命題;否則,說明理由.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com