0  1041  1049  1055  1059  1065  1067  1071  1077  1079  1085  1091  1095  1097  1101  1107  1109  1115  1119  1121  1125  1127  1131  1133  1135  1136  1137  1139  1140  1141  1143  1145  1149  1151  1155  1157  1161  1167  1169  1175  1179  1181  1185  1191  1197  1199  1205  1209  1211  1217  1221  1227  1235  447090 

2、已知非零向量a、b,若a+2b與a-2b互相垂直,則

A.                B.  4              C.               D. 2

試題詳情

1、集合P={x」x2-16<0},Q={x」x=2n,nZ},則PQ=

A.{-2,2}     B.{-2,2,-4,4}     C.{2,0,2}      D.{-2,2,0,-4,4}

試題詳情

所以x+a+1≠0,那么a≠-4.

當a<-4時,x2>3=x1,則

在區(qū)間(-∞,3)上,f `(x)<0, f (x)為減函數(shù);

在區(qū)間(3,?a?1)上,f `(x)>0,f (x)為增函數(shù);

在區(qū)間(?a?1,+∞)上,f `(x)<0,f (x)為減函數(shù)。

當a>-4時,x2<3=x1,則

在區(qū)間(-∞,?a?1)上,f `(x)<0, f (x)為減函數(shù);

在區(qū)間(?a?1,3)上,f `(x)>0,f (x)為增函數(shù);

在區(qū)間(3,+∞)上,f `(x)<0,f (x)為減函數(shù)。

(Ⅱ)由(Ⅰ)知,當a>0時,f (x)在區(qū)間(0,3)上的單調(diào)遞增,在區(qū)間(3,4)上單調(diào)遞減,那么f (x)在區(qū)間[0,4]上的值域是[min(f (0),f (4) ),f (3)],

而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,

那么f (x)在區(qū)間[0,4]上的值域是[-(2a+3)e3,a+6].

又在區(qū)間[0,4]上是增函數(shù),

且它在區(qū)間[0,4]上的值域是[a2+,(a2+)e4],

由于(a2+)-(a+6)=a2-a+=()2≥0,所以只須僅須

(a2+)-(a+6)<1且a>0,解得0<a<.

故a的取值范圍是(0,)。

 

 

試題詳情

21.(本小題滿分14分)

設是函數(shù)的一個極值點。

(Ⅰ)、求與的關系式(用表示),并求的單調(diào)區(qū)間;

(Ⅱ)、設,。若存在使得成立,求的取值范圍。

 點評:本小題主要考查函數(shù)、不等式和導數(shù)的應用等知識,考查綜合運用數(shù)學知識解決問題的能力。

解:(Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x,

由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a,

則 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x

=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x.

令f `(x)=0,得x1=3或x2=-a-1,由于x=3是極值點,

試題詳情

于是將4、5代入3,化簡后可得-=.

從而,點B在以MN為直徑的圓內(nèi)。

 

試題詳情

20.(本小題滿分14分)

設分別為橢圓的左、右頂點,橢圓長半軸的長等于焦距,且為它的右準線。

(Ⅰ)、求橢圓的方程;

(Ⅱ)、設為右準線上不同于點(4,0)的任意一點,若直線分別與橢圓相交于異于的點,證明點在以為直徑的圓內(nèi)。

(此題不要求在答題卡上畫圖)

點評:本小題主要考查直線、圓和橢圓等平面解析幾何的基礎知識,考查綜合運用數(shù)學知識進行推理運算的能力和解決問題的能力。

解:(Ⅰ)依題意得 a=2c,=4,解得a=2,c=1,從而b=.

故橢圓的方程為 .

(Ⅱ)解法1:由(Ⅰ)得A(-2,0),B(2,0).設M(x0,y0).

∵M點在橢圓上,∴y0=(4-x02).               1

又點M異于頂點A、B,∴-2<x0<2,由P、A、M三點共線可以得

P(4,).

從而=(x0-2,y0),

=(2,).

∴?=2x0-4+=(x02-4+3y02).      2

將1代入2,化簡得?=(2-x0).

∵2-x0>0,∴?>0,則∠MBP為銳角,從而∠MBN為鈍角,

故點B在以MN為直徑的圓內(nèi)。

解法2:由(Ⅰ)得A(-2,0),B(2,0).設M(x1,y1),N(x2,y2),

則-2<x1<2,-2<x2<2,又MN的中點Q的坐標為(,),

依題意,計算點B到圓心Q的距離與半徑的差

-=(-2)2+()2-[(x1-x2)2+(y1-y2)2]

                 =(x1-2) (x2-2)+y1y1                     3

又直線AP的方程為y=,直線BP的方程為y=,

而點兩直線AP與BP的交點P在準線x=4上,

∴,即y2=                       4

又點M在橢圓上,則,即        5

試題詳情

故設獎得分數(shù)線約為83.1分。

 

試題詳情

即=0.9049,查表得≈1.31,解得x=83.1.

試題詳情

P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,

試題詳情

這說明成績在90分以上(含90分)的學生人數(shù)約占全體參賽人數(shù)的2.28%,因此,

參賽總人數(shù)約為≈526(人)。

(Ⅱ)假定設獎的分數(shù)線為x分,則

試題詳情


同步練習冊答案