可取n
又AB⊥平面BCE. ∴AB⊥OC.OC⊥平面ABE
及n?
則由n?
設(shè)平面ADE的法向量為n=,
,
則由已知條件有:,,
解法1:取BE的中點O,連OC.
∵BC=CE, ∴OC⊥BE.又AB⊥平面BCE.
以O(shè)為原點建立空間直角坐標(biāo)系O-xyz如圖,
6. 〖理科、文科〗如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD= 2, ∠BCE=1200.
(Ⅰ)求證:平面ADE⊥平面ABE ;
(Ⅱ)求點C到平面ADE的距離.
點到平面的距離=.
注:若為了看圖方便,也可以把圖調(diào)整后,標(biāo)好字母證明之.
(Ⅲ)解法3:由(Ⅱ)解法2,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com