通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時間的變化而變化,講課開始時,學(xué)生的興趣激增;中間有一段時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)表示學(xué)生注意力隨時間t (分鐘)的變化規(guī)律(越大,表明學(xué)生注意力越集中),經(jīng)過實驗分析得知:
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過
適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
19.(本大題滿分14分)
18.(本大題滿分13分) 在三棱錐S―ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點.
(1)證明:AC⊥SB;
(2)求二面角N―CM―B的大。
(3)求點B到平面CMN的距離.
17. (本大題滿分13分)
有A,B,C,D四個城市,它們都有一個著名的旅游點依此記為a,b,c,d把A,B,C,D和a,b,c,d分別寫成左、右兩列,現(xiàn)在一名旅游愛好者隨機(jī)用4條線把左右全部連接起來,構(gòu)成“一一對應(yīng)”,已知連接一個城市與該城市的旅游點正確的得2分,連錯的得0分;
(1)求該愛好者至少得2分的概率; (2)求所得分的數(shù)學(xué)期望?
已知銳角△ABC中,三個內(nèi)角為A、B、C,兩向量,,若與是共線向量,(1)∠A的大。唬2)求函數(shù)取最大值時,∠B的大小
16.(本大題滿分12分)
15. 對于一切實數(shù)x,令[x]為不大于x的最大整數(shù),則函數(shù)稱為高斯函數(shù)或取整函數(shù),如 f(2.1)=2;若為數(shù)列的前n項和,則=____________.
14. 已知服從正態(tài)分布N(5,4),那么P()=____________.
13.若的展開式的第7項為,則
12. 已知變量、滿足則的最大值為__________。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com