0  441587  441595  441601  441605  441611  441613  441617  441623  441625  441631  441637  441641  441643  441647  441653  441655  441661  441665  441667  441671  441673  441677  441679  441681  441682  441683  441685  441686  441687  441689  441691  441695  441697  441701  441703  441707  441713  441715  441721  441725  441727  441731  441737  441743  441745  441751  441755  441757  441763  441767  441773  441781  447090 

7. She always thinks of____ more than herself.

A. other  B. others  C. the other  D. the others

試題詳情

6. - ___is it from here?  -Only half an hour’s ride.

A. How far  B. How long  C. How soon  D. Flow much

試題詳情

5. - Shall we go on a picnic?   -That’s going to be ______

A.    fun  B. funny  C. fun  D. very fun

試題詳情

4. Jim and Bill don’t live _____ the middle school.

A. away from  B. far from  C. far away  D. far

試題詳情

3. They have decided to go to work _____every day.

A. by bikes  B. on feet  C. by bus  D. in car

試題詳情

2. Jack began to do his homework as soon as he____ home.

A. came to  B. reached  C. arrived at  D. got to

試題詳情

1. The bus station is about five hundred meters____ here,it’s within walking distance.

A. away from  B. away  C. far away from  D. far from

試題詳情

12.設(shè)函數(shù)f(x)在(-∞,+∞)上滿足f(2-x)=f(2+x),f(7-x)=f(7+x),且在閉區(qū)間[0,7]上,只有f(1)=f(3)=0.

(1)試判斷函數(shù)y=f(x)的奇偶性; 

(2)試求方程f(x)=0在閉區(qū)間[-2 005,2 005]上的根的個數(shù),并證明你的結(jié)論.

解 (1)由

 從而知函數(shù)y=f(x)的周期為T=10.又f(3)=f(1)=0,而f(7)≠0,故f(-3)≠0. 

故函數(shù)y=f(x)是非奇非偶函數(shù). 

(2)由(1)知y=f(x)的周期為10. 

又f(3)=f(1)=0,f(11)=f(13)=f(-7)=f(-9)=0, 

故f(x)在[0,10]和[-10,0]上均有兩個解,從而可知函數(shù)y=f(x)在[0,2 005]上有402個解,在[-2 005,0]上有400個解,所以函數(shù)y=f(x)在[-2 005,2 005]上有802個解.

試題詳情

11.已知函數(shù)f(x)=x2+|x-a|+1,a∈R. 

(1)試判斷f(x)的奇偶性; 

(2)若-≤a≤,求f(x)的最小值.

解  (1)當(dāng)a=0時,函數(shù)f(-x)=(-x)2+|-x|+1=f(x), 

此時,f(x)為偶函數(shù).當(dāng)a≠0時,f(a)=a2+1,f(-a)=a2+2|a|+1, 

f(a)≠f(-a),f(a)≠-f(-a),此時,f(x) 為非奇非偶函數(shù). 

(2)當(dāng)x≤a時,f(x)=x2-x+a+1=(x-)2+a+, 

∵a≤,故函數(shù)f(x)在(-∞,a]上單調(diào)遞減, 

從而函數(shù)f(x)在(-∞,a]上的最小值為f(a)=a2+1. 

當(dāng)x≥a時,函數(shù)f(x)=x2+x-a+1=(x+)2-a+, 

∵a≥-,故函數(shù)f(x)在[a,+∞)上單調(diào)遞增,從而函數(shù)f(x)在[a,+∞)上的最小值為f(a)=a2+1. 

綜上得,當(dāng)-≤a≤時,函數(shù)f(x)的最小值為a2+1. 

試題詳情

10.已知f(x)是R上的奇函數(shù),且當(dāng)x∈(-∞,0)時,f(x)=-xlg(2-x),求f(x)的解析式. 

解  ∵f(x)是奇函數(shù),可得f(0)=-f(0),∴f(0)=0. 

當(dāng)x>0時,-x<0,由已知f(-x)=xlg(2+x),∴-f(x)=xlg(2+x), 

即f(x)=-xlg(2+x) (x>0).∴f(x)=

即f(x)=-xlg(2+|x|) (x∈R).

試題詳情


同步練習(xí)冊答案