(2012?武漢模擬)如圖所示,矩形ABCD的面積為24平方厘米.三角形ADM與三角形BCN的面積之和為7.8平方厘米,則四邊形PMON的面積是
1.8
1.8
平方厘米.
分析:因三角形AOM和三角形BOC的面積相等都是長(zhǎng)方形面積的
1
4
,可求出三角形AOM與三角形BON的面積的和,再用三角形ABP的面積減付出三角形ABO和三角形AOM和三角形BON的面積,就是四邊形PMON的面積.據(jù)此解答.
解答:解:要S△AOB=24÷4=6(平方厘米),
S△AOM+S△BON
=S△AOD+S△BOC-(S△ADM+S△BCN),
=24÷4+24÷4-7.8,
=6+6-7.8,
=4.2(平方厘米),
S四邊形PMON
=S△ABP-S△ABO-(S△AOM+S△BON),
=24÷2-24÷4-4.2,
=12-6-4.2,
=1.8(平方厘米).
答:四邊形PMON的面積是1.8平方厘米.
故答案為:1.8.
點(diǎn)評(píng):本題的關(guān)鍵是根據(jù)是求出S△AOM+S△BON的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

(2012?武漢模擬)甲乙兩人計(jì)劃一個(gè)月共生產(chǎn)零件6000個(gè),實(shí)際甲超額完成本人計(jì)劃的30%,乙生產(chǎn)的比本人計(jì)劃生產(chǎn)數(shù)多480個(gè).這樣下來(lái),兩人一共比計(jì)劃多生產(chǎn)1200個(gè),乙實(shí)際這個(gè)月生產(chǎn)了
4080
4080
個(gè).

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

(2012?武漢模擬)一輛汽車(chē)從甲地開(kāi)往乙地,如果把車(chē)速提高20%,可以比原定時(shí)間提前1.5小時(shí)到達(dá);如果以原速行駛200千米后再提高車(chē)速25%,則提前36分鐘到.甲乙兩地相距
300
300
千米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

(2012?武漢模擬)把任意三角形分成三個(gè)小三角形,使它們的面積的比是2:3:5.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

(2012?武漢模擬)甲、乙兩車(chē)分別從A、B兩地同時(shí)出發(fā),相對(duì)而行,4小時(shí)后兩車(chē)相遇,相遇后兩車(chē)?yán)^續(xù)按照各自的原速度向前行使了3小時(shí),這時(shí)甲距離B地還有135千米,乙距離A地還有30千米,乙車(chē)比甲車(chē)每小時(shí)多行
15
15
千米;甲乙兩地相距
660
660
千米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

(2012?武漢模擬)一個(gè)正方體的棱長(zhǎng)增加原來(lái)的
12
,它的表面積比原表面積增加
125
125
%

查看答案和解析>>

同步練習(xí)冊(cè)答案