如圖,用2條線段可以把一個(gè)邊長(zhǎng)為10厘米的正方形分割成面積相等的4部分,這兩條分割線的長(zhǎng)度總和是20厘米(如圖),現(xiàn)在請(qǐng)你用不超過(guò)4條的線段將一個(gè)邊長(zhǎng)為10厘米的正方形分割成面積相等的5部分,要求找出3種不同的分割方法,其分割線的長(zhǎng)度總和必須小于40厘米,在圖中畫(huà)分割線并在每個(gè)圖下面的橫線上寫(xiě)上分割線的長(zhǎng)度總和.

解:根據(jù)分析畫(huà)圖如下:

分析:首先一個(gè)一個(gè)邊長(zhǎng)10厘米的正方形面積為100平方厘米,分成相等的五份,每份面積應(yīng)為20平方厘米;
第一種方法:把它分為一個(gè)長(zhǎng)為10厘米,寬為2厘米的長(zhǎng)方形和四個(gè)長(zhǎng)為5厘米,寬為4厘米的長(zhǎng)方形;
第二種方法:把它分為一個(gè)長(zhǎng)為10厘米,寬為2厘米的長(zhǎng)方形和四個(gè)底邊為5厘米,高為8厘米直角三角形;
第三種方法:把它分成中間一個(gè)正方形和四個(gè)角上四個(gè)直角三角形,如下圖所示.
點(diǎn)評(píng):本題先把每一個(gè)正方形的兩條對(duì)邊都5等分是解答的關(guān)鍵確定分割線長(zhǎng)度總和最短是難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

想一想,填一填.
(1)如圖1,把線段的一端無(wú)限延長(zhǎng)就得到一條
射線
射線
,記作
射線OA
射線OA

(2)如圖2,一條線段,將它的兩個(gè)端點(diǎn)
無(wú)限
無(wú)限
地延長(zhǎng)就得到一條直線.直線也可以用小寫(xiě)字母表示,本圖中的直線記作
直線a
直線a

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

如圖1是一個(gè)多邊形,可以用尺量出這個(gè)多邊形每一條邊的長(zhǎng)度,請(qǐng)你想一想需要量幾條邊的長(zhǎng)度,就可以求出這個(gè)圖形的周長(zhǎng).
分析:為了分析方便,我們把每一條線段都編上序號(hào),如圖2.

方法一:把圖中10條線段長(zhǎng)度都測(cè)量出來(lái),相加,就得到這個(gè)圖形的周長(zhǎng).
方法二:仔細(xì)觀察上面的圖形,在水平方向,線段①、③、⑨、⑦的和與線段⑤等長(zhǎng);在豎直方向,線段⑩、⑧、⑥的和與線段②、④的和相等.因此,我們只要測(cè)量出線段②、④、⑤的長(zhǎng)度就可以求出整個(gè)圖形的周長(zhǎng).根據(jù)以上分析,請(qǐng)計(jì)算圖3圖形的周長(zhǎng).(單位:厘米)

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

如圖,用2條線段可以把一個(gè)邊長(zhǎng)為10厘米的正方形分割成面積相等的4部分,這兩條分割線的長(zhǎng)度總和是20厘米(如圖),現(xiàn)在請(qǐng)你用不超過(guò)4條的線段將一個(gè)邊長(zhǎng)為10厘米的正方形分割成面積相等的5部分,要求找出3種不同的分割方法,其分割線的長(zhǎng)度總和必須小于40厘米,在圖中畫(huà)分割線并在每個(gè)圖下面的橫線上寫(xiě)上分割線的長(zhǎng)度總和.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:072

  1.畫(huà)示意圖

  圖形具有直觀性,但在實(shí)際數(shù)學(xué)問(wèn)題中的具體含義、具體條件以及數(shù)量關(guān)系往往比較隱蔽,比較復(fù)雜,那么畫(huà)示意圖是指將實(shí)際數(shù)學(xué)問(wèn)題中隱藏復(fù)雜的內(nèi)涵條件以及復(fù)雜的數(shù)量關(guān)系畫(huà)出示意圖,用幾何圖形直觀形象地表示出來(lái),這樣不僅簡(jiǎn)單明了,而且容易從整體上把握題目,便于思考和求解,俗話說(shuō):“一圖頂千言!

  2.在計(jì)數(shù)問(wèn)題中常見(jiàn)的幾種示意圖

  (1)畫(huà)線段圖。即把文字的含義用線段表示出來(lái),例如“組隊(duì)問(wèn)題”“和差問(wèn)題”和倍問(wèn)題”“行程問(wèn)題”等等,用線段圖解起來(lái)往往比文字的敘述更簡(jiǎn)單明了得多。

  如:用1、23、4四個(gè)數(shù)中兩個(gè)數(shù)組成一個(gè)兩位數(shù),試求有幾種不同的組合方法?

 、儆A、B、C、D四點(diǎn)分別表示1、2、3、4,畫(huà)出線段圖:

 、诰段的條數(shù)與組合方案數(shù)之間的關(guān)系是________。

  (2)畫(huà)“樹(shù)圖”。什么樣的圖叫做“樹(shù)圖”呢?請(qǐng)看實(shí)例:

  從甲村到乙村有兩條路可走,從乙村到丙村有三條路可走(如圖(a)),那么從甲村到丙村有幾條路可走呢?

  根據(jù)題意可知,從甲村到乙村的每條道路都對(duì)應(yīng)著從乙村到丙村的三條道路,于是我們可畫(huà)出如圖b的圖形,這圖形中明顯地告訴我們,從甲村到丙村有________條路可走。

  在數(shù)學(xué)上將類似上圖的這種沒(méi)有回路的圖形叫做“樹(shù)圖”,現(xiàn)實(shí)生活中最典型的“樹(shù)圖”是家譜。在數(shù)學(xué)學(xué)習(xí)中,畫(huà)“樹(shù)圖”是計(jì)數(shù)問(wèn)題中最基本的思考方法。

  3.需要同學(xué)們注意的是,數(shù)學(xué)問(wèn)題來(lái)自于生活實(shí)際,千變?nèi)f化、錯(cuò)綜復(fù)雜、靈活性很強(qiáng),在計(jì)數(shù)時(shí),實(shí)際應(yīng)用絕不能拘泥于這幾種示意圖。比如連線圖、階梯圖等等,要因題而定,只要畫(huà)出的示意圖能幫助思考,推理或簡(jiǎn)化解答都可以。

查看答案和解析>>

同步練習(xí)冊(cè)答案