斐波那契數(shù)列1,1,2,3,5,8,…從第三個(gè)數(shù)起,以后的每一個(gè)數(shù)都是它前面兩個(gè)數(shù)的和,請(qǐng)問:
(1)這個(gè)數(shù)列里的數(shù)字在奇偶性方面有什么規(guī)律?
(2)這個(gè)數(shù)列的前2012個(gè)數(shù)中,有多少個(gè)奇數(shù)?
分析:(1)奇數(shù)+偶數(shù)得到奇數(shù);奇數(shù)+奇數(shù)得到偶數(shù);所以這數(shù)列的數(shù)字是按照:奇數(shù)、奇數(shù)、偶數(shù)這三個(gè)一組進(jìn)行循環(huán)排列的;
(2)用2012除以3,看有多少個(gè)這樣的一組,還余幾;再根據(jù)商和余數(shù)求出2012的里面有多少個(gè)奇數(shù).
解答:解:(1)這數(shù)列的數(shù)字是按照:奇數(shù)、奇數(shù)、偶數(shù)這三個(gè)一組進(jìn)行循環(huán)排列的;其中前兩個(gè)是奇數(shù),第三個(gè)是偶數(shù).

(2)2012÷3=670…2;
余數(shù)是2,那么這個(gè)數(shù)列的第2011個(gè)數(shù)和第2012個(gè)數(shù)是奇數(shù);
670×2+2,
=1340+2,
=1342(個(gè));
答:一共有1342個(gè)奇數(shù).
點(diǎn)評(píng):解決本題先根據(jù)兩個(gè)自然數(shù)和的奇、偶性來判斷出這個(gè)數(shù)列的奇偶數(shù)的循環(huán)情況;再把重復(fù)出現(xiàn)的數(shù)看成一組,找出排列的周期性規(guī)律,再根據(jù)規(guī)律求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

科學(xué)發(fā)現(xiàn):植物的花瓣、萼片、果實(shí)的數(shù)目以及其他方面的特征,都非常吻合于一個(gè)奇特的數(shù)列--著名的斐波那契數(shù)列:1,1,2,3,5,8,13,21,34,55,…仔細(xì)觀察以上數(shù)列,則它的第12個(gè)數(shù)應(yīng)該是
144
144

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

斐波那契數(shù)列:1,1,2,3,5,8,13…,則數(shù)列中第2001個(gè)數(shù)被4除所得余數(shù)是
2
2

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:072

葉序現(xiàn)象與斐波那契數(shù)列

  你吃過菠蘿么?仔細(xì)觀察菠蘿果實(shí)的排列狀況,就會(huì)發(fā)現(xiàn)它們形成一種螺旋結(jié)構(gòu)。使人驚異的是,這種排列的現(xiàn)象在植物的葉、鱗片、花等部分,幾乎到處可見。

  再進(jìn)一步研究一下這些排列的狀況,它們通常是以順時(shí)針方向或逆時(shí)針方向螺旋形層層排列的。如果數(shù)一下其中順時(shí)針和逆時(shí)針排列的層數(shù),就可發(fā)現(xiàn)這兩個(gè)數(shù)是位于斐波那契數(shù)列中相鄰的兩個(gè)數(shù)。

  什么是斐波那契數(shù)列?斐波那契(1170-1240)是一位意大利的數(shù)學(xué)家。他在所寫的《算盤書》一書中,提出了下面的問題。

  “有小兔子一對(duì),如果它們第二個(gè)月成年,第三個(gè)月生下一對(duì)小兔,以后,每月生產(chǎn)小兔一對(duì),而所生的小兔亦在第二個(gè)月成年,第三個(gè)月生產(chǎn)另一對(duì)小兔,此后也每個(gè)月生一對(duì)小兔。則一年后共有多少對(duì)兔子?(假設(shè)每產(chǎn)一對(duì)兔子必為一雌一雄,而所有兔子都可以相互交配,并且沒有死亡。)

  分析:

  這樣推算下去,每個(gè)月所生的兔子數(shù)可以排成下面的數(shù)列:

  1,1,2,35,8,1321,34,5589,144……

  我們把這一列數(shù)稱為斐波那契數(shù)列。研究一下這一列數(shù)的規(guī)律,從第三項(xiàng)起每一個(gè)數(shù)都是排在它前面兩個(gè)數(shù)的和。如

  2=113=12,5=23,8=35,13=58,21=813,…

  斐波那契數(shù)列可以無限地寫下去。設(shè)表示其中的第n項(xiàng),那么

  。

  比如,我們上面排出的第11項(xiàng)是89,第12項(xiàng)是144,那么第13項(xiàng)應(yīng)該是

  

以下各項(xiàng)依序是

  

  

  

  …   …    …

  生物學(xué)家研究了花序中小花排列的螺旋數(shù),一般順時(shí)針方向?yàn)?/FONT>21,逆時(shí)針方向?yàn)?/FONT>34,恰恰是斐波那契數(shù)列中的。又如向日葵花序中小花或籽粒的排列,順時(shí)針螺旋數(shù)與逆時(shí)針螺旋數(shù)之比一般是1221(),3455(),89144(),在一些大型樣本中,這個(gè)比值甚至為144233()。同樣,生物學(xué)家研究了各種菠蘿球形花的鱗片順、逆時(shí)針的螺旋數(shù),一般總是落在斐波那契數(shù)列3,5,813相鄰的兩數(shù)中。

  為什么不同的植物都具有類似的螺旋?為什么這些螺旋圈數(shù)總是相鄰的斐波那契數(shù)?兔子的繁衍與植物的花序之間為什么會(huì)有這樣的聯(lián)系,這些問題至今尚未得到令人滿意的解答。目前,科學(xué)家們一般認(rèn)為,對(duì)植物來說,斐波那契葉序是最節(jié)約能量的。

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:填空題

科學(xué)發(fā)現(xiàn):植物的花瓣、萼片、果實(shí)的數(shù)目以及其他方面的特征,都非常吻合于一個(gè)奇特的數(shù)列--著名的斐波那契數(shù)列:1,1,2,3,5,8,13,21,34,55,…仔細(xì)觀察以上數(shù)列,則它的第12個(gè)數(shù)應(yīng)該是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案