已知函數(shù)處有極小值,
(1)試求的值,并求出的單調(diào)區(qū)間.
(2)若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.
根據(jù)函數(shù)在某點(diǎn)處有極值的概念,可以知道在處導(dǎo)數(shù)為零。并且求解得到a,b的值,然后利用導(dǎo)數(shù)的正負(fù)號來解不等式,得到單調(diào)增減區(qū)間。第二問中,方程根的問題,可以通過分離參數(shù)的思想,來得到常函數(shù)與已知曲線有3個(gè)不同的交點(diǎn)問題來處理。
解:(1)函數(shù)f(x)=x3-3ax2+2bx的導(dǎo)數(shù)為f′(x)=3x2-6ax+2b
∵函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,∴f′(1)=0,f(1)=-1
即3-6a+2b=0,1-3a+2b=-1,解得a=1/3,b=-1/2
∴f(x)=x3-x2-x,f′(x)=3x2-2x-1
令f′(x)=0,即3x2-2x-1=0,解得,x=-1/3,或x=1
又∵當(dāng)x>1時(shí),f′(x)>0,當(dāng)-1/3<x<1時(shí),f′(x)<0,當(dāng)x<-1/3時(shí),f′(x)>0,
∴函數(shù)在x=-13時(shí)有極大值為f(-1/3)=5/27
函數(shù)在x=1時(shí)有極小值為f(1)=-1
(3)要的方程有3個(gè)不同實(shí)根,則需滿足
解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案