【題目】如圖,平行四邊形ABCD中,AB=4,BC=2.若把它放在平面直角坐標(biāo)系中,使AB在x軸上,點(diǎn)C在y軸上,如果點(diǎn)A的坐標(biāo)為(-3,0),求點(diǎn)B,C,D的坐標(biāo).
【答案】點(diǎn)B,C,D的坐標(biāo)分別為(1,0),(0,)和(-4,).
【解析】首先根據(jù)AB的長度和點(diǎn)A的坐標(biāo)得出點(diǎn)B的坐標(biāo),根據(jù)BC和OB的長度以及直角三角形的勾股定理求出OC的長度,從而得出點(diǎn)C的坐標(biāo),根據(jù)平行四邊形的性質(zhì)得出點(diǎn)D的坐標(biāo).
∵AB=4,點(diǎn)A的坐標(biāo)為(-3,0), 設(shè)點(diǎn)B的坐標(biāo)為(b,0),
則b-(-3)=b+3=4,∴b=1,∴點(diǎn)B的坐標(biāo)為(1,0). 設(shè)點(diǎn)C的坐標(biāo)為(0,c),
由OB=1,BC=2,得OC===,∴點(diǎn)C的坐標(biāo)為(0,).
∵CD∥AB,∴點(diǎn)D的坐標(biāo)為(-4,).
∴點(diǎn)B,C,D的坐標(biāo)分別為(1,0),(0,)和(-4,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,有一個(gè)菱形BFDE(點(diǎn)E,F(xiàn)分別在線段AB,CD上),記它們的面積分別為SABCD和SBFDE , 現(xiàn)給出下列命題:①若 = ,則tan∠EDF= ;②若DE2=BDEF,則DF=2AD,則( )
A.①是假命題,②是假命題
B.①是真命題,②是假命題
C.①是假命題,②是真命題
D.①是真命題,②是真命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(組)解應(yīng)用題
(1)某中學(xué)組織初一學(xué)生春游,原計(jì)劃租用45座汽車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座汽車,則比45座汽車多出一輛無人乘坐,但其余客車恰好坐滿.問初一年級人數(shù)是多少?原計(jì)劃租用45座汽車多少輛?
(2)《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,記有許多有趣而又不乏技巧的算術(shù)程式,其中記載:“今有甲、乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八.乙得甲太半,亦滿四十八,問甲、乙二人原持錢各幾何?”譯文:“甲,乙兩人各有若干錢.如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問甲,乙二人原來各有多少錢?”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=22,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)數(shù)軸上點(diǎn)B表示的數(shù) ;點(diǎn)P表示的數(shù) (用含t的代數(shù)式表示)
(2)若M為AP的中點(diǎn),N為BP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過程中,線段MN的長度是 .
(3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問多少秒時(shí)P、Q之間的距離恰好等于2?
(4)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料: 如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).觀察圖象可知:當(dāng)x=﹣3或1時(shí),y1=y2 .
(1)通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集 .
(2)參考觀察函數(shù)的圖象方法,解決問題:關(guān)于x的不等式x2+a﹣ <0(a>0)只有一個(gè)整數(shù)解,則a的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組計(jì)劃做一批“中國結(jié)”,如果每人做5個(gè),那么比計(jì)劃多了9個(gè);如果每人做4個(gè),那么比計(jì)劃少15個(gè).該小組共有多少人?計(jì)劃做多少個(gè)“中國結(jié)”?
根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:
小明:5x□( )=4x□( 。; 小紅: .
(1)根據(jù)小明、小紅所列的方程,其中“□”中是運(yùn)算符號,“( 。中是數(shù)字,請你分別指出未知數(shù)x、y表示的意義.
小明所列的方程中x表示 ,
小紅所列的方程中y表示 ;
(2)請選擇小明、小紅中任意一種方法,完整的解答該題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b經(jīng)過點(diǎn)A(2,0),B(0,1),動(dòng)點(diǎn)P是x軸正半軸上的動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸,交直線AB于點(diǎn)C,以O(shè)A,AC為邊構(gòu)造OACD,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求直線AB的函數(shù)表達(dá)式;
(2)若四邊形OACD恰是菱形,請求出m的值;
(3)在(2)的條件下,y軸的正半軸上是否存在點(diǎn)Q,連結(jié)CQ,使得∠OQC+∠ODC=180°.若存在,直接寫出所有符合條件的點(diǎn)Q的坐標(biāo),若不存在,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有人,在扇形統(tǒng)計(jì)圖中,m的值是;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】標(biāo)準(zhǔn)的籃球場長28m,寬15m.在某場籃球比賽中,紅隊(duì)甲、乙兩名運(yùn)動(dòng)員分別在A,B處,位置如圖①所示,已知點(diǎn)B到中線EF的距離為6m,點(diǎn)C到中線EF的距離為8m,運(yùn)動(dòng)員甲在A處搶到籃球后,迅速將球拋向C處,球的平均運(yùn)行速度是m/s,運(yùn)動(dòng)員乙在B處看到后同時(shí)快跑到C處并恰好接住了球(點(diǎn)A,B,C在同一直線上).圖②中l1,l2分別表示球、運(yùn)動(dòng)員乙離A處的距離y(m)與從A處拋球后的時(shí)間x(s)的關(guān)系圖象.
(1)直接寫出a,b,c的值;
(2)求運(yùn)動(dòng)員乙由B處跑向C處的過程中y(m)與x(s)的函數(shù)解析式l2;
(3)運(yùn)動(dòng)員要接住球,一般在球距離自己還有2m遠(yuǎn)時(shí)要做接球準(zhǔn)備,求運(yùn)動(dòng)員乙準(zhǔn)備接此球的時(shí)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com