【題目】如圖,正方形中,延長至使,以為邊作正方形,延長交于,連接,,為的中點(diǎn),連接分別與,交于點(diǎn).則下列說法:①;②;③;④.其中正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】A
【解析】
根據(jù)正方形的性質(zhì),以及中點(diǎn)的性質(zhì)可得△FGN≌△HAN,即證①;利用角度之間的等量關(guān)系的轉(zhuǎn)換可以判斷②;根據(jù)△AKH∽△MKF,進(jìn)而利用相似三角形的性質(zhì)即可判斷③;設(shè)AN=AG=x,則AH=2x,FM=6x,根據(jù)△AKH∽△MKF得出,再利用三角形的面積公式求出△AFN的面積,再利用即可求出四邊形DHKM的面積,作比即可判斷④.
∵四邊形EFGB是正方形,CE=2EB,四邊形ABCD是正方形
∴G為AB中點(diǎn),∠FGN=∠HAN=90°,AD=AB
即FG=AG=GB=AB
又H是AD的中點(diǎn)
AH=AD
∴FG=HA
又∠FNG=∠HNA
∴△FGN≌△HAN,故①正確;
∵∠DAM+∠GAM=90°
又∠NFG+∠FNG=90°
即∠FNG=∠GAM
∵∠FNG+∠NFG+90°=180°
∠AMD+∠DAM+90°=180°
∠FNG=∠GAM=∠AMD
∴,故②正確;
由圖可得:MF=FG+MG=3EB
△AKH∽△MKF
∴
∴KF=3KH
又∵NH=NF
且FH=KF+KH=4KH=NH+NF
∴NH=NF=2KH
∴KH=KN
∴FN=2NK,故③正確;
∵AN=GN且AN+GN=AG
∴可設(shè)AN=AG=x,則AH=2x,FM=6x
由題意可得:△AKH∽△MKF且相似比為:
∴△AKH以AH為底邊的高為:
∴
∴,故④正確;
故答案選擇A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題9分)把代數(shù)式通過配湊等手段,得到完全平方式,再運(yùn)用完全平方式是非負(fù)性這一性質(zhì)增加問題的條件,這種解題方法叫做配方法.配方法在代數(shù)式求值,解方程,最值問題等都有著廣泛的應(yīng)用.
例如:①用配方法因式分解:a2+6a+8
原式=a2+6a+9-1
=(a+3)2 –1
=(a+3-1)(a+3+1)
=(a+2)(a+4)
②若M=a2-2ab+2b2-2b+2,利用配方法求M的最小值:
a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1
=(a-b)2+(b-1)2 +1
∵(a-b)2≥0,(b-1)2 ≥0
∴當(dāng)a=b=1時(shí),M有最小值1
請根據(jù)上述材料解決下列問題:
(1)在橫線上添上一個(gè)常數(shù)項(xiàng)使之成為完全平方式:a 2+4a+ .
(2)用配方法因式分解: a2-24a+143
(3)若M=a2+2a +1,求M的最小值.
(4)已知a2+b2+c2-ab-3b-4c+7=0,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( )
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8.
(1)求DE的長;
(2)求△ADB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(0,a),B(0,b),C(m,b)且(a-4)2+ =0,
(1)求C點(diǎn)坐標(biāo)
(2)作DE DC,交y軸于E點(diǎn),EF為 AED的平分線,且DFE= 90o。 求證:FD平分ADO;
(3)E 在 y 軸負(fù)半軸上運(yùn)動(dòng)時(shí),連 EC,點(diǎn) P 為 AC 延長線上一點(diǎn),EM 平分∠AEC,且 PM⊥EM,PN⊥x 軸于 N 點(diǎn),PQ 平分∠APN,交 x 軸于 Q 點(diǎn),則 E 在運(yùn)動(dòng)過程中,的大小是否發(fā)生變化,若不變,求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把二元一次方程的一個(gè)解用一個(gè)點(diǎn)表示出來,例如:可以把它的其中一個(gè)解用點(diǎn)(2,1 )在平面直角坐標(biāo)系中表示出來
探究1:
(1)請你在直角坐標(biāo)系中標(biāo)出4個(gè)以方程的解為坐標(biāo)的點(diǎn),然后過這些點(diǎn)中的任意兩點(diǎn)作直線,你有什么發(fā)現(xiàn),請寫出你的發(fā)現(xiàn) .
在這條直線上任取一點(diǎn),這個(gè)點(diǎn)的坐標(biāo)是方程的解嗎? (填“是”或“不是”___
(2)以方程的解為坐標(biāo)的點(diǎn)的全體叫做方程的圖象.根據(jù)上面的探究想一想:方程的圖象是_ _.
探究2:根據(jù)上述探究結(jié)論,在同-平面直角坐標(biāo)系中畫出二元一次方程組中的兩個(gè)二元一次方程的圖象,由這兩個(gè)二元一次方程的圖象,請你直接寫出二元一次方程組的解,即
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,點(diǎn)是邊的中點(diǎn),點(diǎn)是邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),延長交射線于點(diǎn),連接,.
(1)求證:四邊形是平行四邊形;
(2)填空:
①當(dāng)的值為_______時(shí),四邊形是矩形;
②當(dāng)的值為______時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有、兩個(gè)觀測站,在的正東方向,(單位:)有一艘小船在點(diǎn)處,從測得小船在北偏西的方向,從測得小船在北偏東的方向.(結(jié)果保留根號(hào))
(1)求點(diǎn)到海岸線的距離;
(2)小船從點(diǎn)處沿射線的方向航行一段時(shí)間后,到達(dá)點(diǎn)處,此時(shí),從測得小船在北偏西的方向,求點(diǎn)與點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的月日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購.經(jīng)調(diào)查:購買臺(tái)甲型設(shè)備比購買臺(tái)乙型設(shè)備多花萬元,購買臺(tái)甲型設(shè)備比購買臺(tái)乙型設(shè)備少花萬元.
(1)求甲、乙兩種型號(hào)設(shè)備每臺(tái)的價(jià)格;
(2)該公司經(jīng)決定購買甲型設(shè)備不少于臺(tái),預(yù)算購買節(jié)省能源的新設(shè)備資金不超過萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備每月的產(chǎn)量為噸,乙型設(shè)備每月的產(chǎn)量為噸.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com