【題目】如圖,AB表示路燈,CD、C′D′表示小明所在兩個不同位置:

(1)分別畫出這兩個不同位置小明的影子;

(2)小明發(fā)現(xiàn)在這兩個不同的位置上,他的影子長分別是自己身高的1倍和2倍,他又量得自己的身高為1.5米,DD′長為3米,你能幫他算出路燈的高度嗎?(B、D、D′在一條直線上)

【答案】(1)詳見解析;(2)4.5米.

【解析】

(1)連接AC、AC′并延長交地面分別為EE′,DEDE′分別為兩個不同位置小明的影子

(2)依題意容易得到△EDC∽△EBA,利用它們對應(yīng)邊成比例就可以求出路燈的高度

1)作圖如圖

(2)∵CDAB,CD′∥AB,∴,∴

DECD=1.5,DE′=2CD=3,∴,解得BD=3,∴ABBEBD+DE=3+1.5=4.5().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明元旦前到文具超市用15元買了若干練習(xí)本,元旦這一天,該超市開展優(yōu)惠活動,同樣的練習(xí)本比元旦前便宜0.2元,小明又用20.7元錢買練習(xí)本,所買練習(xí)本的數(shù)量比上一次多50%,小明元旦前在該超市買了多少本練習(xí)本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ykxk0)經(jīng)過點(m,m)(m0).線段BC的兩個端點分別在x軸與直線ykx上滑動(BC均與原點O不重合),且BC.分別作BPx軸,CP⊥直線ykx,直線BP、CP交于點P.經(jīng)探究,在整個滑動過程中,O、P兩點間的距離為定值,則該距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖像與性質(zhì)進行了探究.下面是小慧的探究過程,請補充完整.

(l)函數(shù)的自變量的取值范圍是 ;

(2)列表,找出的幾組對應(yīng)值.

其中, ;

(3)在平面直角坐標(biāo)系中,描出以上表中各對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖像;

(4)寫出該函數(shù)的一條性質(zhì): .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,,的垂直平分線交軸與點,連接為第一象限內(nèi)的點.

1)求點坐標(biāo);

2)當(dāng)時,求的值;

3)如圖2,點軸上的一個動點,當(dāng)為等腰三角形時,直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在ABC中,ACB=90°,AC=4cm,BC=3cm,如果點P從點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s,連接PQ,設(shè)運動時間為ts)(0t4).

1)當(dāng)t為何值時,PQBC;

2)是否存在某時刻t,使線段PQ恰好把ABC的面積平分?若存在,求出此時t的值;若不存在,請說明理由;

3)如圖乙,連接PC,將PQC沿QC翻折,得到四邊形PQPC,當(dāng)四邊形PQPC為菱形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在筆直的鐵路上A、B兩點相距25kmC、D為兩村莊,DA=10km,CB=15kmDAABA,CBABB,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等.求E應(yīng)建在距A多遠處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平面直角坐標(biāo)系中,點A(a,b)的坐標(biāo)滿足|a﹣b|+b2﹣8b+16=0.

(1)如圖1,求證:OA是第一象限的角平分線;

(2)如圖2,過A作OA的垂線,交x軸正半軸于點B,點M、N分別從O、A兩點同時出發(fā),在線段OA上以相同的速度相向運動(不包括點O和點A),過A作AE⊥BM交x軸于點E,連BM、NE,猜想∠ONE與∠NEA之間有何確定的數(shù)量關(guān)系,并證明你的猜想;

(3)如圖3,F(xiàn)是y軸正半軸上一個動點,連接FA,過點A作AE⊥AF交x軸正半軸于點E,連接EF,過點F點作∠OFE的角平分線交OA于點H,過點H作HK⊥x軸于點K,求2HK+EF的值.

查看答案和解析>>

同步練習(xí)冊答案