【題目】對于反比例函數(shù)y(k≠0),下列說法不正確的是(  )

A. 它的圖象分布在第一、三象限 B. (k,k)在它的圖象上

C. 它的圖象關(guān)于原點對稱 D. 在每個象限內(nèi)yx的增大而增大

【答案】D

【解析】

根據(jù)反比例函數(shù)的性質(zhì)對四個選項進(jìn)行逐一分析即可.

解:A、反比例函數(shù)y=(k≠0),因為k2>0,根據(jù)反比例函數(shù)的性質(zhì)它的圖象分布在第一、三象限,故本選項錯誤;
B、把點(k,k),代入反比例函數(shù)y=(k≠0)中成立,故本選項錯誤;
C、反比例函數(shù)y=(k≠0),k2>0根據(jù)反比例函數(shù)的性質(zhì)它的圖象分布在第一、三象限,是關(guān)于原點對稱,故本選項錯誤;
D、反比例函數(shù)y=(k≠0),因為k2>0,根據(jù)反比例函數(shù)的性質(zhì)它的圖象分布在第一、三象限,在每個象限內(nèi),yx的增大而減小,故本選項正確.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形OABC中,,點的坐標(biāo)分別為,點DAB上一點,且,雙曲線經(jīng)過點D,交BC于點E

求雙曲線的解析式;

求四邊形ODBE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形ABCD繞點D旋轉(zhuǎn),點C落在BC上的點H處,點B恰好落在點A處,得平行四邊形DHAE,若BH=2,CH=3,則DC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一幢樓房AB背后有臺階CD,臺階每層高0.2,AC=17.2,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°,測得樓房在地面上的影長AE=10,現(xiàn)有一只小貓睡在臺階MN上曬太陽.

(1)求樓房的高度約為多少米?(結(jié)果精確到0.1)

(2)過了一會兒,當(dāng)α=45°,小貓還能不能曬到太陽?請說明理由.(參考數(shù)據(jù):≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙OECB的延長線上,連結(jié)AC、AE,ACB=BAE=45°

1)求證:AE是⊙O的切線;

2)若AB=AD,AC=,tanADC=3,BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點E.

(1)當(dāng)F為AB的中點時,求該函數(shù)的解析式;

(2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(59),已知拋物線的頂點D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點坐標(biāo);

(2)軸上是否存在一點C,與AB組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,∠BADABC的一個外角,∠BAC、BAD的平分線分別交⊙O于點E、F.請你在圖上連接EF.(1)證明:EF是⊙O的直徑;(2)請你判斷EFBC有怎樣的位置關(guān)系?并請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM12米.現(xiàn)以O點為原點,OM所在直線為x軸建立直角坐標(biāo)系(如圖1所示).

1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;

2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計算說明;

3)施工隊計劃在隧道門口搭建一個矩形腳手架”CDAB,使AD點在拋物線上。B、C點在地面OM線上(如圖2所示).為了籌備材料,需測算腳手架三根鋼桿AB、ADDC的長度之和的最大值是多少,請你幫施工隊計算一下.

查看答案和解析>>

同步練習(xí)冊答案