【題目】如圖,點(diǎn)E、F分別在矩形ABCD的邊BC、AD上,把這個(gè)矩形沿EF折疊后,點(diǎn)D恰好落在BC邊上的G點(diǎn)處,且∠AFG=60°
(1)求證:GE=2EC;
(2)連接CH、DG,試證明:CH∥DG.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)由折疊得到D=∠FGH=90°,∠C=∠H=90°,EC=EH,由矩形得出邊平行,內(nèi)角為直角,將問(wèn)題轉(zhuǎn)化到△EGH中,由30°所對(duì)的直角邊等于斜邊的一半,利用等量代換可得結(jié)論;
(2)由軸對(duì)稱的性質(zhì),對(duì)稱軸垂直平分對(duì)應(yīng)點(diǎn)所連接的線段,垂直于同一直線的兩條直線互相平行得出結(jié)論.
(1)由折疊得:∠D=∠FGH=90°,∠C=∠H=90°,EC=EH,
∵矩形ABCD,
∴AD∥BC,
∴∠FGE=∠AFG=60°,
∴∠HGE=90°-∠FGE=90°-60°=30°,
在Rt△EGH中,HE=GE,
即:GE=2HE=2EC.
(2)連接GD、HC,由折疊得:點(diǎn)D和點(diǎn)G、點(diǎn)C和點(diǎn)H關(guān)于直線EF成軸對(duì)稱,
∴EF⊥GD,EF⊥HC,
∴GD∥HC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】古巴比倫的記數(shù)法是六十進(jìn)制的,用 表示1,用 表示10,這兩種符號(hào)能表示一直到59的數(shù)字,例如,32可以用 表示。從60起,開(kāi)始使用符號(hào)組,從右往左依次是個(gè)位、六十位、三千六百位……(每一位的數(shù)值都是上一位的60倍),例如, 的個(gè)位表示23個(gè)1,六十位表示2個(gè)60,所以這個(gè)符號(hào)表示143。則下列表示3812的符號(hào)是( )
A.B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)﹣23÷4﹣|﹣3|+5×
(2)先化簡(jiǎn),再求值:(﹣4x2+2x﹣8)﹣(x﹣1),其中x=
(3)解方程:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
小強(qiáng):如果每千克的利潤(rùn)為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.
【利潤(rùn)=(銷售價(jià)-進(jìn)價(jià))銷售量】
(1)請(qǐng)根據(jù)他們的對(duì)話填寫(xiě)下表:
銷售單價(jià)x(元/kg) | 10 | 11 | 13 |
銷售量y(kg) |
(2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷售這種水果每天獲取的利潤(rùn)為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是矩形ABCD的一條對(duì)角線.
(1)作BD的垂直平分線EF,分別交AD,BC于點(diǎn)E,F,垂足為點(diǎn)O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法)
(2)在(1)中,連接BE和DF,求證:四邊形DEBF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)是的中點(diǎn),點(diǎn)是線段的延長(zhǎng)線上的一動(dòng)點(diǎn),連接,過(guò)點(diǎn)作的平行線,與線段的延長(zhǎng)線交于點(diǎn),連接、.
求證:四邊形是平行四邊形.
若,,則在點(diǎn)的運(yùn)動(dòng)過(guò)程中:
①當(dāng)________時(shí),四邊形是矩形,試說(shuō)明理由;
②當(dāng)________時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填入相應(yīng)集合的括號(hào)內(nèi).
+8.5,﹣3,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.
(1)正數(shù)集合:{_____…};
(2)整數(shù)集合:{_____…};
(3)非正整數(shù)集合:{_____…};
(4)負(fù)分?jǐn)?shù)集合:{_____…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,觀察函數(shù)y=|x|的圖象,寫(xiě)出它的兩條的性質(zhì);
(2)在圖1中,畫(huà)出函數(shù)y=|x-3|的圖象;
根據(jù)圖象判斷:函數(shù)y=|x-3|的圖象可以由y=|x|的圖象向 平移 個(gè)單位得到;
(3)①函數(shù)y=|2x+3|的圖象可以由y=|2x|的圖象向 平移 單位得到;
②根據(jù)從特殊到一般的研究方法,函數(shù)y=|kx+3|(k為常數(shù),k≠0)的圖象可以由函數(shù)y=|kx|(k為常數(shù),k≠0)的圖象經(jīng)過(guò)怎樣的平移得到.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒,底面為矩形EFGH,如圖2.設(shè)小正方形的邊長(zhǎng)為x厘米.
(1)當(dāng)矩形紙板ABCD的一邊長(zhǎng)為90厘米時(shí),求紙盒的側(cè)面積的最大值;
(2)當(dāng)EH:EF=7:2,且側(cè)面積與底面積之比為9:7時(shí),求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com