如圖所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的長(zhǎng).

解:過P作PE⊥OB于E,

    因?yàn)椤螦OP=∠BOP=15°,PD⊥OA,

    所以PD=PE,

    因?yàn)镻C∥OA,所以∠BCP=∠BOA=30°,

    在Rt△PCE中,PE=PC,所以PE=×4=2,

    因?yàn)镻E=PD,所以PD=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,則PD等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD等于(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=4,則PC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,則PD等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案