(2007•江蘇)如圖,正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)n°后得到正方形AEFG,邊EF與CD交于點(diǎn)O.
(1)以圖中已標(biāo)有字母的點(diǎn)為端點(diǎn)連接兩條線(xiàn)段(正方形的對(duì)角線(xiàn)除外),要求所連接的兩條線(xiàn)段相交且互相垂直,并說(shuō)明這兩條線(xiàn)段互相垂直的理由;
(2)若正方形的邊長(zhǎng)為2cm,重疊部分(四邊形AEOD)的面積為,求旋轉(zhuǎn)的角度n.

【答案】分析:(1)易證Rt△ADO≌Rt△AEO,得到∠DAO=∠OAE,則問(wèn)題得證;
(2)四邊形AEOD,若連接OA,則OA把四邊形評(píng)分成兩個(gè)全等的三角形,根據(jù)解直角三角形得條件就可以求出旋轉(zhuǎn)的角度.
解答:解:(1)AO⊥DE.
證明:∵在Rt△ADO與Rt△AEO中,AD=AE,AO=AO,
∴Rt△ADO≌Rt△AEO,
∴∠DAO=∠OAE(即AO平分∠DAE),
∴AO⊥DE(等腰三角形的三線(xiàn)合一).

(2)n=30°.
理由:連接AO,
∵四邊形AEOD的面積為,
∴三角形ADO的面積,
∵AD=2,
∴DO=,在Rt△ADO中,∠DAO=30°,
∴∠EAD=60°,∠EAB=30°,
即n=30°.
點(diǎn)評(píng):本題考查旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對(duì)應(yīng)線(xiàn)段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年江蘇省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•江蘇)如圖,MN為⊙O的弦,∠M=50°,則∠MON等于( )
A.50°
B.55°
C.65°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年江蘇省揚(yáng)州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•江蘇)如圖,正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)n°后得到正方形AEFG,邊EF與CD交于點(diǎn)O.
(1)以圖中已標(biāo)有字母的點(diǎn)為端點(diǎn)連接兩條線(xiàn)段(正方形的對(duì)角線(xiàn)除外),要求所連接的兩條線(xiàn)段相交且互相垂直,并說(shuō)明這兩條線(xiàn)段互相垂直的理由;
(2)若正方形的邊長(zhǎng)為2cm,重疊部分(四邊形AEOD)的面積為,求旋轉(zhuǎn)的角度n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年江蘇省揚(yáng)州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•江蘇)如圖,△ABC中A(-2,3),B(-3,1),C(-1,2).
(1)將△ABC各點(diǎn)的橫坐標(biāo)增加4個(gè)單位長(zhǎng)度,縱坐標(biāo)保持不變,得△A1B1C1,畫(huà)出△A1B1C1
(2)將△ABC各點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)分別乘以-1,得△A2B2C2,畫(huà)出△A2B2C2;
(3)將△A2B2C2各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別乘以-1,得△A3B3C3,畫(huà)出△A3B3C3;
(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△______與△______成軸對(duì)稱(chēng),對(duì)稱(chēng)軸是______;△______與△______成中心對(duì)稱(chēng),對(duì)稱(chēng)中心的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年江蘇省揚(yáng)州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•江蘇)如圖是一個(gè)廢棄的扇形統(tǒng)計(jì)圖,小華利用它的陰影部分來(lái)制作一個(gè)圓錐,則這個(gè)圓錐的底面半徑是( )

A.3.6
B.1.8
C.3
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•江蘇)如圖,已知AD與BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.
(1)求證:CD∥AB;
(2)求證:△BDE≌△ACE;
(3)若O為AB中點(diǎn),求證:OF=BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案