【題目】拋物線y=x2﹣2mx﹣3m2(m>0)與x軸交于A、B兩點(diǎn),A點(diǎn)在B點(diǎn)左邊,與y軸交于C點(diǎn),頂點(diǎn)為M.
(1)當(dāng)m=1時(shí),求點(diǎn)A、B、M坐標(biāo);
(2)如圖(1)的條件下,若P為拋物線上一個(gè)動(dòng)點(diǎn),以AP為斜邊的等腰直角的直角頂點(diǎn)Q在對(duì)稱(chēng)軸上,(A、P、Q按順時(shí)針?lè)较蚺帕校,求P點(diǎn)坐標(biāo).
(3)如圖2,若一次函數(shù)y=kx+b過(guò)B點(diǎn)且與拋物線只有一個(gè)公共點(diǎn),平移直線y=kx+b,使其過(guò)拋物線的頂點(diǎn)M,與拋物線另一個(gè)交點(diǎn)為D,與x軸交于F點(diǎn),當(dāng)m變化時(shí),求證:DF:MF是定值.
【答案】
(1)解:當(dāng)m=1時(shí),拋物線解析式為y=x2﹣2x﹣3,
當(dāng)y=0時(shí),x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0);
∵y=(x﹣1)2﹣4,
∴M點(diǎn)坐標(biāo)為(1,﹣4);
(2)解:拋物線的對(duì)稱(chēng)軸為直線x=1,直線x=1交x軸于N,設(shè)P(t,t2﹣2t﹣3),Q(1,a)
作PH⊥直線x=1于點(diǎn)H,如圖,
∵△APQ為等腰直角三角形,
∴PQ=AQ,∠AQP=90°,
∵∠AQH+∠AQN=90°,∠AQN+∠QAN=90°,
∴∠PQH=∠QAN,
在△PQH和△QAN中
,
∴△PQH≌△QAN,
∴QH=AN,PH=QN,
即t2﹣2t﹣3﹣a=2,1﹣t=a,
∴t2﹣2t﹣3﹣(1﹣t)=2,
整理得t2﹣t﹣5=0,解得t1= ,t2= ,
∴P點(diǎn)坐標(biāo)為( , )或( , );
(3)解:證明:y=x2﹣2mx﹣3m2=(x﹣m)2﹣4m2,則M(m,﹣4m2),
當(dāng)y=0時(shí),x2﹣2mx﹣3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),
把B(3m,0)代入y=kx+b得3mk+b=0,解得b=﹣3mk,
則直線y=kx+b的解析式表示為y=kx﹣3mk,
∵一次函數(shù)y=kx﹣3mk與拋物線只有一個(gè)公共點(diǎn),
∴方程x2﹣2mx﹣3m2=kx﹣3mk有相等的實(shí)數(shù)解,
方程整理為x2﹣(2m+k)x﹣3m2+3mk=0,
∵△=(2m+k)2﹣4(﹣3m2+3mk)=0,
∴k=4m,
∴一次函數(shù)y=kx+b表示為y=4mx﹣12m2,
設(shè)直線y=kx+b平移后的解析式為y=4mx+n,
把M(m,﹣4m2)代入得﹣4m2=﹣4m2+n,解得n=﹣8m2,
即經(jīng)過(guò)點(diǎn)D的直線解析式為y=4mx﹣8m2,
當(dāng)y=0時(shí),4mx﹣8m2=0,解得x=2m,則F(2m,0)
解方程組 得 或 ,則D(5m,12m2)
作AG⊥x軸于E,MG∥x軸,它們相交于點(diǎn)G,如圖2,
∵EF∥MG,
∴ = = =3.
【解析】(1)把m=1代入得到拋物線的解析式,然后利用配方法可求得點(diǎn)M的坐標(biāo),接下來(lái),令y=0可求得對(duì)應(yīng)的x的值,從而可得到點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)設(shè)P(t,t2﹣2t﹣3),Q(1,a),作PH⊥直線x=1于點(diǎn)H,首先證明△PQH≌△QAN,依據(jù)全等三角形的性質(zhì)可得到QH=AN,PH=QN,從而可得到關(guān)于a、t的方程組,解方程組可求得點(diǎn)P的坐標(biāo);
(3)作AG⊥x軸于E,MG∥x軸,它們相交于點(diǎn)G,利用配方法求得拋物線的頂點(diǎn)坐標(biāo)為M(m,﹣4m2),然后令y=0可求得B(3m,0),把B(3m,0)代入y=kx+b得3mk+b=0,求得b的值,從而得直線的解析式為y=kx﹣3mk,接下來(lái),將y=kx﹣3mk代入拋物線的解析式,得到關(guān)于x的方程,然后由一次函數(shù)y=kx﹣3mk與拋物線只有一個(gè)公共點(diǎn)可得到△=0,從而可得到k與m的關(guān)系,設(shè)直線y=kx+b平移后的解析式為y=4mx+n,把點(diǎn)M的坐標(biāo)代入可得到n=﹣8m2,則經(jīng)過(guò)點(diǎn)D的直線解析式為y=4mx﹣8m2,然后再求得點(diǎn)F的坐標(biāo),解方程組可求得點(diǎn)D的坐標(biāo),最后,依據(jù)平行線分線段成比例定理求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,且滿(mǎn)足方程組,連接,.
(1)求的面積;
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿軸向左運(yùn)動(dòng),連接,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒, 的面積為, 試用含的式子表示;
(3)在的條件下,點(diǎn),點(diǎn)是上一點(diǎn),連接,點(diǎn)在延長(zhǎng)線上,且,連接, 當(dāng)點(diǎn)在軸負(fù)半軸上,,, 四邊形的面積與的面積比為時(shí),求此時(shí)值和點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店老板去圖書(shū)批發(fā)市場(chǎng)購(gòu)買(mǎi)某種圖書(shū),第一次用1200元購(gòu)書(shū)若干本,并按該書(shū)定價(jià)7元出售,很快售完.由于該書(shū)暢銷(xiāo),第二次購(gòu)書(shū)時(shí),每本書(shū)的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購(gòu)該書(shū)的數(shù)量比第一次多10本,當(dāng)按定價(jià)售出200本時(shí),出現(xiàn)滯銷(xiāo),便以定價(jià)的4折售完剩余的書(shū).
(1)第一次購(gòu)書(shū)的進(jìn)價(jià)是多少元?
(2)試問(wèn)該老板這兩次售書(shū)總體上是賠錢(qián)了,還是賺錢(qián)了(不考慮其他因素)?若賠錢(qián),賠多少;若賺錢(qián),賺多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】因?yàn)?/span>,所以.這說(shuō)明能被整除,同時(shí)也說(shuō)明多項(xiàng)式有一個(gè)因式為;另外,當(dāng)多項(xiàng)式的值為.閱讀上述材料回答問(wèn)題:
(1)由可知,當(dāng)_時(shí),多項(xiàng)式的值為;
(2)一般地,如果一個(gè)關(guān)于字母的多項(xiàng)式當(dāng)時(shí),的值為,那么與代數(shù)式之間有一定的關(guān)系,這種關(guān)系是:_____;
(3)已知關(guān)于的多項(xiàng)式能被整除,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中,運(yùn)算結(jié)果正確的是( )
A.(﹣1)3+(﹣3.14)0+2﹣1=﹣
B.2x﹣2=
C. =﹣4
D.a2a3=a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD內(nèi)接于⊙O,點(diǎn)E為AD上一點(diǎn),連接AC,CB,∠B=∠AEC.
(1)如圖1,求證:CE=CD;
(2)如圖2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度數(shù);
(3)如圖3,在(2)的條件下,延長(zhǎng)CE交⊙O于點(diǎn)G,若tan∠BAC= ,EG=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC為等邊三角形,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,點(diǎn)C重合)。以AD為邊作等邊三角形ADE,連接CE。
(1)如圖(1),當(dāng)點(diǎn)D在邊BC上時(shí)。
①求證:△ABD≌△ACE;
②直接判斷結(jié)論BC=DC+CE是否成立(不需證明);
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)寫(xiě)出BC,DC,CE之間存在的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com