【題目】如圖,直線,與和分別相切于點和點.點和點分別是和上的動點,沿和平移.的半徑為,.下列結(jié)論錯誤的是( )
A. B. 和的距離為
C. 若,則與相切 D. 若與相切,則
【答案】D
【解析】
首先過點N作NC⊥AM于點C,直線l1∥l2,⊙O與l1和l2分別相切于點A和點B,⊙O的半徑為1,易求得MN==,l1和l2的距離為2;若∠MON=90°,連接NO并延長交MA于點C,易證得CO=NO,繼而可得即O到MN的距離等于半徑,可證得MN與⊙O相切;由題意可求得若MN與⊙O相切,則AM=或.
如圖1,過點N作NC⊥AM于點C,
∵直線l1∥l2,⊙O與l1和l2分別相切于點A和點B,⊙O的半徑為1,
∴CN=AB=2,
∵∠1=60°,
∴MN==,
故A與B正確;
如圖2,
若∠MON=90°,連接NO并延長交MA于點C,則△AOC≌△BON,
故CO=NO,△MON≌△MOM′,故MN上的高為1,即O到MN的距離等于半徑.
故C正確;
如圖3,
∵MN是切線,⊙O與l1和l2分別相切于點A和點B,
∴∠AMO=∠1=30°,
∴AM=;
∵∠AM′O=60°,
∴AM′=,
∴若MN與⊙O相切,則AM=或;
故D錯誤.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,AB=4,E為CD邊中點,F為AD邊中點,AE交BD于G,交BF于H,連接DH.
(1)求證:BG=2DG;
(2)求AH:HG:GE的值;
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點C關(guān)于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.
(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中, ∠B=90°,DE//AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.
(1)求證:△ACD是等腰三角形;
(2)若AB=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在中,,以為直徑作分別交,于,兩點,過點的切線交的延長線于點.下列結(jié)論:
①;②兩段劣弧=;③與相切;④.
其中一定正確的有( )個.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在等邊的邊上,,射線于點,點是射線上一動點,點是線段上一動點,當的值最小時,,則為( )
A. 14B. 13C. 12D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在平面直角坐標系內(nèi),△ABC三個頂點的坐標分別為A(1,﹣2),B(4,﹣1),C(3,﹣3)(正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度).
(1)作出△ABC向左平移5個單位長度,再向下平移3個單位長度得到的△A1B1C1;
(2)以坐標原點O為位似中心,相似比為2,在第二象限內(nèi)將△ABC放大,放大后得到△A2B2C2作出△A2B2C2;
(3)以坐標原點O為旋轉(zhuǎn)中心,將△ABC逆時針旋轉(zhuǎn)90°,得到△A3B3C3,作出△A3B3C3,并求線段AC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10cm,AD=8cm,點P從點A出發(fā)沿AB以2cm/s的速度向點終點B運動,同時點Q從點B出發(fā)沿BC以1cm/s的速度向點終點C運動,它們到達終點后停止運動.
(1)幾秒后,點P、D的距離是點P、Q的距離的2倍;
(2)幾秒后,△DPQ的面積是24cm2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com