【題目】如圖,有長為的籬笆,一面利用墻(墻的最大可用長度為),圍成中間隔有一道籬笆(平行于)的矩形花圃.設(shè)花圃的一邊

________(用含的代數(shù)式表示),矩形的面積________(用含的代數(shù)式表示);

如果要圍成面積為的花圃,的長是多少?

中表示矩形的面積的代數(shù)式通過配方,問:當(dāng)等于多少時(shí),能夠使矩形花圃面積最大,最大的面積為多少?

【答案】(1);(2)7;(3)當(dāng)AB=5時(shí),矩形花圃ABCD面積最大,最大面積為75m2

【解析】

1)用總長減去與墻垂直的三條籬笆的長度的和即為BC的長,然后利用長乘以寬即可求得面積

2)根據(jù)面積為63列出一元二次方程求解即可;

3)配方后即可確定面積的最值及AB的長

1BC=303x,矩形ABCD的面積=﹣3x2+30x;

2)當(dāng)矩形ABCD的面積為63時(shí),﹣3x2+30x=63,解此方程得x1=7x2=3,當(dāng)x=7時(shí),303x=920,符合題意;

當(dāng)x=3時(shí),303x=2120不符合題意,舍去

∴當(dāng)AB的長為7m時(shí),花圃的面積為63m2

3)矩形ABCD的面積=﹣3x2+30x=﹣3x52+75

x520,3x520,3x52+7575

0303x20∴當(dāng)x=5時(shí),滿足

即當(dāng)AB=5時(shí),矩形花圃ABCD面積最大最大面積為75m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,CD是弦,ABCDE,OFACF,BE=OF.

(1)求證:OFBC;

(2)求證AFO≌△CEB;

(3)若EB=5cm,CD=cm,設(shè)OE=x,求x值及陰影部分的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠ABD,還應(yīng)補(bǔ)充一個(gè)條件,才能推出△ABC≌△ABD.補(bǔ)充下列其中一個(gè)條件后,不一定能推出△ABC≌△ABD的是(  )

A. BC=BD B. AC=AD C. ∠ACB=∠ADB D. ∠CAB=∠DAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:如果,是一元二次方程的兩根,那么有,.這是一元二次方程根與系數(shù)的關(guān)系,我們利用它可以用來解題,例,是方程的兩根,求的值.解法可以這樣:

,,則

請你根據(jù)以上解法解答下題:

已知,是方程的兩根,求:

的值;

的值.

試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A1,點(diǎn)B1C1分別是B、C的對應(yīng)點(diǎn).

1)請畫出平移后的A1B1C1(不寫畫法);

2)將A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的A2B2C1(不寫畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用14500元購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表(二)所示:

類別

成本價(jià)(元/箱)

銷售價(jià)(元/箱)

25

35

35

48

求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?

(2)該商場售完這500箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號以身高作為標(biāo)準(zhǔn),共分為6種型號)

根據(jù)以上信息,解答下列問題:

(1)該班共有 名學(xué)生,其中穿175型校服的學(xué)生有 名;

(2)在條形統(tǒng)計(jì)圖中,請把空缺部分補(bǔ)充完整;

(3)該班學(xué)生所穿校服型號的眾數(shù)為 型,中位數(shù)為 型.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知直線l的解析式為:ykx+xk+1,若將直線lA點(diǎn)旋轉(zhuǎn).如圖所示,當(dāng)直線l旋轉(zhuǎn)到l1位置時(shí),k2l1y軸交于點(diǎn)B,與x軸交于點(diǎn)C;當(dāng)直線l旋轉(zhuǎn)到l2位置時(shí),k=﹣l2y軸交于點(diǎn)D

1)求點(diǎn)A的坐標(biāo);

2)直接寫出B、CD三點(diǎn)的坐標(biāo),連接CD計(jì)算ADC的面積;

3)已知坐標(biāo)平面內(nèi)一點(diǎn)E,其坐標(biāo)滿足條件Ea,a),當(dāng)點(diǎn)E與點(diǎn)A距離最小時(shí),直接寫出a的值.

查看答案和解析>>

同步練習(xí)冊答案