【題目】如圖,邊長為1的正方形OABC繞著點O逆時針旋轉(zhuǎn)30°得到正方形ODEF,連接AF,求的周長.
【答案】2+
【解析】
記BC與ED的交點為G,連結(jié)OG交AF與點H,延長OG交BE與點M.首先依據(jù)HL可證明Rt△OCG≌Rt△ODG,則CD=CG,∠COG=∠DOG,于是可得到BG=EG,OH為∠AOF的平分線,則AH=FH,然后利用特殊銳角三角函數(shù)值可求得AH的長,從而可求得AF的長,從而可求得的周長.
記BC與ED的交點為G,連結(jié)OG交AF與點H.
∵∠D=∠C=90°,
∴△OCG和△ODG均為直角三角形.
又∵,
∴Rt△OCG≌Rt△ODG.
∴DG=CG,∠COG=∠DOG.
∴BG=EG.
又∵∠AOD=∠FOC,
∴∠FOH=∠AOH=∠AOF=60°.
又∵OA=OF,
∴AH=FH=AOsin60°=1×=,
∴AF=2AH=
∴的周長=AO+FO+AF=1+1+=2+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、C的坐標分別為(0,8)、(6,0),以AC為直徑作⊙O,交坐標軸于點B,點D是⊙O 上一點,且,過點D作DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;
(3)求線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-x-3交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當⊙P與直線AB相切時,點P的坐標是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在Rt中,,點是斜邊的中點,,且,于點,聯(lián)結(jié).
(1)求證: ;
(2)當時,求的值;
(3)在(2)的條件下,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,網(wǎng)格中每個小正方形的邊長為1,點A,B均在格點上.則線段AB的長為 .請借助網(wǎng)格,僅用無刻度的直尺在AB上作出點P,使AP=.
(2)⊙O為△ABC的外接圓,請僅用無刻度的直尺,依下列條件分別在圖2,圖3的圓中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法,請下結(jié)論注明你所畫的弦).
①如圖2,AC=BC;
②如圖3,P為圓上一點,直線l⊥OP且l∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com