【題目】如圖,將一副直角三角形的直角頂點C疊放一起

1)如圖1,若CE恰好是∠ACD的角平分線,請你猜想此時CD是不是的∠ECB的角平分線?并簡述理由;

2)如圖1,若∠ECDα,CD在∠ECB的內(nèi)部,請猜想∠ACE與∠DCB是否相等?并簡述理由;

3)在如圖2的條件下,請問∠ECD與∠ACB的和是多少?并簡述理由.

【答案】1CD是∠ECB的角平分線,見解析;(2)∠ACE=∠DCB,見解析;(3)∠DCE+∠ACB180°,見解析.

【解析】

1CD∠ECB的角平分線,求出∠ECD∠BCD45°即可證明;(2∠ACE∠DCB,求出∠ACE∠DCB90°α即可;(3)∠DCE+∠ACB180°,根據(jù)∠DCE+∠ACB=∠DCE+∠ACE+∠BCE=∠ACD+∠BCE即可進行求解證明.

解:(1CD是∠ECB的角平分線,

理由是:∵∠ACD90°,CE是∠ACD的角平分線,

∴∠ECDACD45°,

∴∠BCD90°﹣∠ECD45°=∠ECD

CD是∠ECB的角平分線;

2)∠ACE=∠DCB,

理由是:∵∠ACD=∠BCE90°,∠ECDα,

∴∠ACE90°﹣α,∠DCB90°﹣α,

∴∠ACE=∠DCB

3)∠DCE+∠ACB180°,

理由是:∵∠ACD=∠BCE90°,

∴∠DCE+∠ACB=∠DCE+∠ACE+∠BCE=∠ACD+∠BCE90°+90°=180°,

即∠DCE+∠ACB180°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明,如圖點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,DEBA,DFCA.求證:∠FDE=∠A

證明:∵DEAB,

∴∠FDE=∠      

DFCA

∴∠A=∠      

∴∠FDE=∠A   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格中每個小正方形邊長為1,ABC的頂點都在格點上.將ABC向左平移2格,再向上平移3格,得到ABC

1)請在圖中畫出平移后的ABC;

2)畫出平移后的ABC的中線BD

3)若連接BBCC,則這兩條線段的關(guān)系是________

(4)ABC在整個平移過程中線段AB 掃過的面積為________

(5)若ABCABE面積相等,則圖中滿足條件且異于點C的格點E共有______

(注:格點指網(wǎng)格線的交點)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017110日,綠色和平發(fā)布了全國74個城市PM2.5濃度年均值排名和相應(yīng)的最大日均值,其中浙江省六個地區(qū)的濃度如下圖所示(舟山的最大日均值條形圖缺損)以下說法中錯誤的是______

則六個地區(qū)中,最大日均值最高的是紹興;杭州的年均值大約是舟山的2倍;舟山的最大日均值不一定低于麗水的最大日均值;六個地區(qū)中,低于國家環(huán)境空氣質(zhì)量標準規(guī)定的年均值35微克每立方米的地區(qū)只有舟山.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知,

1)畫的垂直平分線于點、(保留作圖痕跡,作圖痕跡請加黑描重);

2)求的度數(shù);

3)若,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是趙爽弦圖,△ABH、△BCG、△CDF和△DAE是四個全等的直角三角形,四邊形ABCDEFGH都是正方形,如果AB10,EF2,那么AH等于( )

A. 8 B. 6 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了探索三角形的內(nèi)切圓半徑r與三角形的周長C、面積S之間的關(guān)系,在數(shù)學(xué)實驗活動中,選取等邊三角形圖甲和直角三角形圖乙進行研究.已知⊙O是△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn).

(1)用刻度尺分別量出表中未量度的△ABC的長,填入空格處并計算出周長C和面積S(結(jié)果精確到0.1);

(2)觀察圖形利用上表實驗數(shù)據(jù)分析、猜測特殊三角形的rC,S之間的關(guān)系,判斷這種關(guān)系對任意三角形(圖丙)是否也成立,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】讓我們輕松一下,做一個數(shù)字游戲。第一步:取一個自然數(shù)n1=5,計算n121a1;第二步:算出a1的各位數(shù)字之和得n2,計算n221a2;第三步,算出a2的各位數(shù)字之和得n3,計算n321a3;…………以此類推,則a2019=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,∠1=∠2,∠3=∠4,則ADBE.完成下列推理過程:

證明:∵ABCD(已知)

∴∠4      

∵∠3=∠4(已知)

∴∠3      

∵∠1=∠2(已知)

∴∠CAE+∠1=∠CAE+∠2

即∠   =∠   

∴∠3   

ADBE   

查看答案和解析>>

同步練習(xí)冊答案