精英家教網 > 初中數學 > 題目詳情

【題目】某廣場綠化工程中有一塊長2千米,寬1千米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間既周邊留有寬度相等的人行通道(如圖),并在這些人行通道鋪上瓷磚,要求鋪瓷磚的面積是矩形空地面積的 ,設人行通道的寬度為x千米,則下列方程正確的是( )

A.(2﹣3x)(1﹣2x)=1
B.
(2﹣3x)(1﹣2x)=1
C.
(2﹣3x)(1﹣2x)=1
D.
(2﹣3x)(1﹣2x)=2

【答案】A
【解析】解:設人行通道的寬度為x千米,
則矩形綠地的長為: (2﹣3x),寬為(1﹣2x),
由題意可列方程:2× (2﹣3x)(1﹣2x)= ×2×1,
即:(2﹣3x)(1﹣2x)=1,
故選:A.
根據題意分別表示出矩形綠地的長和寬,再由鋪瓷磚的面積是矩形空地面積的 ,即矩形綠地的面積= 矩形空地面積,可列方程.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】x1 , x2是關于x的一元二次方程x2﹣mx+m﹣2=0的兩個實數根,是否存在實數m使 + =0成立?則正確的結論是(
A.m=0時成立
B.m=2時成立
C.m=0或2時成立
D.不存在

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解不等式2x﹣3< ,并把解集在數軸上表示出來.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C、D是⊙O上一點,∠CDB=20°,過點C作⊙O的切線交AB的延長線于點E,則∠E等于(
A.40°
B.50°
C.60°
D.70°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,從點A看一山坡上的電線桿PQ,觀測點P的仰角是45°,向前走6m到達B點,測得頂端點P和桿底端點Q的仰角分別是60°和30°,求該電線桿PQ的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點都在格點上,建立如圖所示的平面直角坐標系.
①將△ABC向左平移7個單位后再向下平移3個單位,請畫出兩次平移后的△A1B1C1 , 若M為△ABC內的一點,其坐標為(a,b),直接寫出兩次平移后點M的對應點M1的坐標;
②以原點O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對應邊的比為1:2.請在網格內畫出在第三象限內的△A2B2C2 , 并寫出點A2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A(a,3),B(b,1)都在雙曲線y= 上,點C,D,分別是x軸,y軸上的動點,則四邊形ABCD周長的最小值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2017通遼)小蘭和小穎用下面兩個可以自由轉動的轉盤做游戲,每個轉盤被分成面積相等的幾個扇形,轉動兩個轉盤各一次,若兩次指針所指數字之和小于4,則小蘭勝,否則小穎勝(指針指在分界線時重轉),這個游戲對雙方公平嗎?請用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在水域上建一個演藝廣場,演藝廣場由看臺Ⅰ,看臺Ⅱ,三角形水域ABC,及矩形表演臺BCDE四個部分構成(如圖),看臺Ⅰ,看臺Ⅱ是分別以AB,AC為直徑的兩個半圓形區(qū)域,且看臺Ⅰ的面積是看臺Ⅱ的面積的3倍,矩形表演臺BCDE 中,CD=10米,三角形水域ABC的面積為 平方米,設∠BAC=θ.
(1)求BC的長(用含θ的式子表示);
(2)若表演臺每平方米的造價為0.3萬元,求表演臺的最低造價.

查看答案和解析>>

同步練習冊答案