圖(a)是三角形,分別聯(lián)結(jié)這個三角形三邊中點得到圖(b),再分別聯(lián)結(jié)圖(b)中間的小三角形三邊的中點,得到圖(c),按此方法繼續(xù)下去,請你根據(jù)每個圖中的三角形個數(shù)的規(guī)律,完成下列問題.

(1)將下表填寫完整.

(2)在第個n圖形中有多少個三角形?(用含n的式子表示)

答案:
解析:

  (1)13,17

  (2)4n-3


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•白下區(qū)一模)概念理解
把一個或幾個圖形分割后,不重疊、無縫隙的重新拼成另一個圖形的過程叫做“剖分--重拼”.如圖1,一個梯形可以剖分--重拼為一個三角形;如圖2,任意兩個正方形可以剖分--重拼為一個正方形.
嘗試操作
如圖3,把三角形剖分--重拼為一個矩形.(只要畫出示意圖,不需說明操作步驟)

閱讀解釋
如何把一個矩形ABCD(如圖4)剖分--重拼為一個正方形呢?操作如下:
①畫輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過點M作MI⊥射線OX,與半圓交于點I;
②圖4中,在CD上取點F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
請說明按照上述操作方法得到的四邊形EBHG是正方形.

拓展延伸
任意一個多邊形是否可以通過若干次的剖分--重拼成一個正方形?如果可以,請簡述操作步驟;如果不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

概念理解
把一個或幾個圖形分割后,不重疊、無縫隙的重新拼成另一個圖形的過程叫做“剖分--重拼”.如圖1,一個梯形可以剖分--重拼為一個三角形;如圖2,任意兩個正方形可以剖分--重拼為一個正方形.
嘗試操作
如圖3,把三角形剖分--重拼為一個矩形.(只要畫出示意圖,不需說明操作步驟)

閱讀解釋
如何把一個矩形ABCD(如圖4)剖分--重拼為一個正方形呢?操作如下:
①畫輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過點M作MI⊥射線OX,與半圓交于點I;
②圖4中,在CD上取點F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
請說明按照上述操作方法得到的四邊形EBHG是正方形.

拓展延伸
任意一個多邊形是否可以通過若干次的剖分--重拼成一個正方形?如果可以,請簡述操作步驟;如果不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市育才中學(xué)九年級(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

概念理解
把一個或幾個圖形分割后,不重疊、無縫隙的重新拼成另一個圖形的過程叫做“剖分--重拼”.如圖1,一個梯形可以剖分--重拼為一個三角形;如圖2,任意兩個正方形可以剖分--重拼為一個正方形.
嘗試操作
如圖3,把三角形剖分--重拼為一個矩形.(只要畫出示意圖,不需說明操作步驟)

閱讀解釋
如何把一個矩形ABCD(如圖4)剖分--重拼為一個正方形呢?操作如下:
①畫輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過點M作MI⊥射線OX,與半圓交于點I;
②圖4中,在CD上取點F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
請說明按照上述操作方法得到的四邊形EBHG是正方形.

拓展延伸
任意一個多邊形是否可以通過若干次的剖分--重拼成一個正方形?如果可以,請簡述操作步驟;如果不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省連云港市東?h中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

概念理解
把一個或幾個圖形分割后,不重疊、無縫隙的重新拼成另一個圖形的過程叫做“剖分--重拼”.如圖1,一個梯形可以剖分--重拼為一個三角形;如圖2,任意兩個正方形可以剖分--重拼為一個正方形.
嘗試操作
如圖3,把三角形剖分--重拼為一個矩形.(只要畫出示意圖,不需說明操作步驟)

閱讀解釋
如何把一個矩形ABCD(如圖4)剖分--重拼為一個正方形呢?操作如下:
①畫輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過點M作MI⊥射線OX,與半圓交于點I;
②圖4中,在CD上取點F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
請說明按照上述操作方法得到的四邊形EBHG是正方形.

拓展延伸
任意一個多邊形是否可以通過若干次的剖分--重拼成一個正方形?如果可以,請簡述操作步驟;如果不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省南京市白下區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

概念理解
把一個或幾個圖形分割后,不重疊、無縫隙的重新拼成另一個圖形的過程叫做“剖分--重拼”.如圖1,一個梯形可以剖分--重拼為一個三角形;如圖2,任意兩個正方形可以剖分--重拼為一個正方形.
嘗試操作
如圖3,把三角形剖分--重拼為一個矩形.(只要畫出示意圖,不需說明操作步驟)

閱讀解釋
如何把一個矩形ABCD(如圖4)剖分--重拼為一個正方形呢?操作如下:
①畫輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過點M作MI⊥射線OX,與半圓交于點I;
②圖4中,在CD上取點F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
請說明按照上述操作方法得到的四邊形EBHG是正方形.

拓展延伸
任意一個多邊形是否可以通過若干次的剖分--重拼成一個正方形?如果可以,請簡述操作步驟;如果不可以,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案