如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A′C′D′.
(1)證明△A′AD′≌△CC′B;
(2)若∠ACB=30°,試問當(dāng)點C'在線段AC上的什么位置時,四邊形ABC′D′是菱形,并請說明理由.
(1)證明:∵四邊形ABCD是矩形,
△A′C′D′由△ACD平移得到,
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.
∴∠D′A′C′=∠BCA.
∴△A′AD′≌△CC′B.
(2)解:當(dāng)點C′是線段AC的中點時,四邊形ABC′D′是菱形.
理由如下:
∵四邊形ABCD是矩形,△A′C′D′由△ACD平移得到,
∴C′D′=CD=AB.
由(1)知AD′=C′B.
∴四邊形ABC′D′是平行四邊形.
在Rt△ABC中,點C′是線段AC的中點,
∴BC′=AC.
而∠ACB=30°,
∴AB=AC.
∴AB=BC′.
∴四邊形ABC′D′是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若tan∠ABC=,BE=7,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
解放橋是天津市的標(biāo)志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開啟的橋梁.
(Ⅰ)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點C處開啟,則AC開啟至A′C′的位置時,A′C′的長為 m;
(Ⅱ)如圖②,某校數(shù)學(xué)興趣小組要測量解放橋的全長PQ,在觀景平臺M處測得∠PMQ=54°,沿河岸MQ前行,在觀景平臺N處測得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放橋的全長PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個三角形重疊部分的面積為32時,它移動的距離AA′等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知A(﹣3,1),B(﹣1,﹣1),C(﹣2,0),曲線ACB是以C為對稱中心的中心對稱圖形,把此曲線沿x軸正方向平移,當(dāng)點C運動到C′(2,0)時,曲線ACB描過的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是一塊矩形ABCD的場地,AB=102m,AD=51m,從A、B兩處入口中的路寬都為1m,兩小路匯合處路寬為2m,其余部分種植草坪,則草坪的面積為( 。
A. 5050m2 B.4900m2 C.5000m2 D. 4998m2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,A、B的坐標(biāo)分別為(1,0)、(0,2),若將線段AB平移到至A1B1,A1、B1的坐標(biāo)分別為(2,a)、(b,3),則a+b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°.
(1)先作∠ABC的平分線交AC邊于點O,再以點O為圓心,OC為半徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)請你判斷(1)中AB與⊙O的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com