【題目】如圖,BD是四邊形ABCD的對角線,ABBC6,∠ABC60°,點G1、G2分別是△ABD和△DBC的重心,則點G1、G2間的距離為_____

【答案】2

【解析】

BD的中點G,連接AG,CG,AC,根據(jù)點G1、G2分別是ABDDBC的重心,得到G1AG上,G2CG上,求得,根據(jù)相似三角形的性質(zhì)得到,根據(jù)已知條件得到ABC是等邊三角形,求得AC6,于是得到結(jié)論.

解:取BD的中點G,連接AG,CGAC,

∵點G1、G2分別是ABDDBC的重心,

G1AG上,G2CG上,

,

∵∠AGC=∠AGC,

∴△GG1G2∽△GAC,

ABBC6,∠ABC60°,

∴△ABC是等邊三角形,

AC6,

G1G22,

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x+6與反比例函數(shù)的圖象交于點A1,m),與x軸交于點B,平行于x軸的直線yn0n6)交反比例函數(shù)的圖象于點M,交AB于點N,連接BM

1)求m的值和反比例函數(shù)的表達式;

2)觀察圖象,直接寫出當(dāng)x0時,不等式2x+6-0的解集;

3)當(dāng)n為何值時,BMN的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組正方形按如圖所示放置,其中頂點B1y軸上,頂點C1,E1,E2,C2,E3,E4,C3…在x軸上.已知正方形A1B1C1D1的邊長為1,∠B1C1O60°,B1C1B2C2B3C3,則正方形A2019B2019C2019D2019的邊長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小強從A處出發(fā)沿北偏東70°方向行走,走至B處,又沿著北偏西30°方向行走至C處,此時需把方向調(diào)整到與出發(fā)時一致,則方向的調(diào)整應(yīng)是( 。

A. 左轉(zhuǎn) 80° B. 右轉(zhuǎn)80° C. 右轉(zhuǎn) 100° D. 左轉(zhuǎn) 100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點P,過A作直線ACPC交⊙O于另一點D,連接PAPB

(1)求證:AP平分∠CAB;

(2)P是直徑AB上方半圓弧上一動點,⊙O的半徑為2,則

①當(dāng)弦AP的長是_____時,以A,O,P,C為頂點的四邊形是正方形;

②當(dāng)的長度是______時,以AD,OP為頂點的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0)和B30),與y軸交于C點,點C關(guān)于拋物線的對稱軸的對稱點為點D.拋物線頂點為H

1)求拋物線的解析式.

2)當(dāng)點E在拋物線的對稱軸上運動時,在直線AD上是否存在點F,使得以點AC、EF為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標(biāo);若不存在,請說明理由.

3)點P為直線AD上方拋物線的對稱軸上一動點,連接PA,PD.當(dāng)SPAD3,若在x軸上存在以動點Q,使PQ+QB最小,若存在,請直接寫出此時點Q的坐標(biāo)及PQ+QB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC內(nèi)接于⊙O,AB是⊙O的直徑,點D在⊙O上,過點C的切線交AD的延長線于點E,且AECE,連接CD

1)求證:DC=BC

2)若AB=5,AC=4,求tanDCE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtOAB中,∠AOB90°,OAOB4,以點O為圓心、2為半徑畫圓,點C是⊙O上任意一點,連接BCOC.將OC繞點O按順時針方向旋轉(zhuǎn)90°,交⊙O于點D,連接AD

1)當(dāng)AD與⊙O相切時,

①求證:BC是⊙O的切線;

②求點COB的距離.

2)連接BD,CD,當(dāng)BCD的面積最大時,點BCD的距離為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bxa0)過點E8,0),矩形ABCD的邊AB在線段OE上(點A在點B的左側(cè)),點C、D在拋物線上,∠BAD的平分線AMBC于點M,點NCD的中點,已知OA2,且OAAD13.

1)求拋物線的解析式;

2F、G分別為x軸,y軸上的動點,順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長的最小值;

3)在x軸下方且在拋物線上是否存在點P,使△ODPOD邊上的高為?若存在,求出點P的坐標(biāo);若不存在,請說明理由;

4)矩形ABCD不動,將拋物線向右平移,當(dāng)平移后的拋物線與矩形的邊有兩個交點K、L,且直線KL平分矩形的面積時,求拋物線平移的距離.

查看答案和解析>>

同步練習(xí)冊答案