【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80米的圍網(wǎng)在水庫中圍成發(fā)如圖所示①②③的三塊矩形區(qū)域,而且這三塊矩形區(qū)域面積相等.已知矩形區(qū)域ABCD的面積為30m2,設(shè)BC的長度為xm,所列方程為_____

【答案】x2﹣40x+40=0.

【解析】

根據(jù)三塊矩形區(qū)域面積相等求出AE和BE之間關(guān)系,進而表示出AB的長度,利用總面積為30 m2即可求解.

這三塊矩形區(qū)域面積相等.

∴S矩形AEFD=2S矩形BCFE,即AE=2EB,

設(shè)EB=a,則AE=2a,AB=3a,

∴AB+HG+DC=8a,

總長為80米,設(shè)BC的長度為x米,

∴AB+HG+DC=80-2x=8a,整理得:a=10-x,

∴3x(10-x)=30,

整理得:x2﹣40x+40=0.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的垂直平分線交,交

1)若,則的度數(shù)是 ;

2)連接,若的周長是

①求的長;

②在直線上是否存在點,使由,構(gòu)成的的周長值最?若存在,標出點的位置并求的周長最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對角線AC、BD相交于點E。且AC⊥BD。(1)求證:CD=BC·AD;(2)點F是邊BC上一點,連接AF,與BD相交于點G,如果∠BAF=∠DBF,求證:。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件50元,售價為每件60元,每個月可賣出200件;如果每件商品的售價每上漲1元.則每個月少賣10件.設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.

(1)求y與x的函數(shù)關(guān)系式;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

(3)若每個月的利潤不低于2160元,售價應(yīng)在什么范圍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80米的圍網(wǎng)在水庫中圍成發(fā)如圖所示①②③的三塊矩形區(qū)域,而且這三塊矩形區(qū)域面積相等.已知矩形區(qū)域ABCD的面積為30m2,設(shè)BC的長度為xm,所列方程為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC 的三個頂點分別是 A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC 以點 O 為旋轉(zhuǎn)中心旋轉(zhuǎn) 180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;

(2)平移△ABC,使對應(yīng)點 A2 的坐標為(0,﹣4),寫出平移后對應(yīng)△A2B2C2的中B2,C2點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,弦AD,BC相交于點E,連接OE,已知AD=BC,ADCB.

(1)求證:AB=CD;

(2)如果⊙O的直徑為10,DE=1,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D、E分別在△ABC的邊AC、BC上,線段BD與AE交于點F,且CDCA=CECB.

(1)求證:∠CAE=∠CBD;

(2)若,求證:ABAD=AFAE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應(yīng)點A的坐標是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

同步練習冊答案