已知拋物線與x軸交于A.B兩點,與y軸交于C點,拋物線的頂點為D點,點A的坐標為(﹣1,0).

(1)求D點的坐標;

(2)如圖1,連接AC,BD并延長交于點E,求∠E的度數(shù);

(3)如圖2,已知點P(﹣4,0),點Q在x軸下方的拋物線上,直線PQ交線段AC于點M,當∠PMA=∠E時,求點Q的坐標.

 

【答案】

(1)頂點D的坐標為(1,﹣4)。

(2)∠E=45°

(3)點Q的坐標為(2,﹣3)或(,)。

【解析】

分析:(1)將點A的坐標代入到拋物線的解析式求得c值,然后配方后即可確定頂點D的坐標。

 (2)連接CD、CB,過點D作DF⊥y軸于點F,首先求得點C的坐標,然后證得△DCB∽△AOC得到∠CBD=∠OCA,根據(jù)∠ACB=∠CBD+∠E=∠OCA+∠OCB,得到∠E=∠OCB=45°。

(3)設(shè)直線PQ交y軸于N點,交BD于H點,作DG⊥x軸于G點,增大△DGB∽△PON后利用相似三角形的性質(zhì)求得ON的長,從而求得點N的坐標,進而求得直線PQ的解析式,設(shè)Q(m,n),根據(jù)點Q在直線PQ和拋物線上,得到,求得m、n的值后即可求得點Q的坐標。

解:(1)把x=﹣1,y=0代入得:1+2+c=0,∴c=﹣3。

。

∴頂點D的坐標為(1,﹣4)。

 (2)如圖1,連接CD、CB,過點D作DF⊥y軸于點F,

解得x=﹣1或x=3,∴B(3,0)。

當x=0時,,∴C(0,﹣3)。

∴OB=OC=3。

∵∠BOC=90°,∴∠OCB=45°,BC=。

又∵DF=CF=1,∠CFD=90°,

∴∠FCD=45°,CD=。

∴∠BCD=180°﹣∠OCB﹣∠FCD=90°

∴∠BCD=∠COA。

又∵,∴△DCB∽△AOC。

又∵∠ACB=∠CBD+∠E=∠OCA+∠OCB,∴∠E=∠OCB=45°。

(3)如圖2,設(shè)直線PQ交y軸于N點,交BD于H點,作DG⊥x軸于G點,

∵∠PMA=45°,∴∠EMH=45°!唷螹HE=90°。

∴∠PHB=90°。∴∠DBG+∠OPN=90°。

又∵∠ONP+∠OPN=90°,∴∠DBG=∠ONP。

又∵∠DGB=∠PON=90°,∴△DGB=∠PON=90°。

∴△DGB∽△PON。

,即,解得ON=2。

∴N(0,﹣2)。

設(shè)直線PQ的解析式為y=kx+b,

,解得:。

∴直線PQ的解析式為。

設(shè)Q(m,n)且n<0,∴

又∵Q(m,n)在上,∴

,解得:m=2或m=。

∴n=﹣3或n=。

∴點Q的坐標為(2,﹣3)或(,)。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于A(-1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標;
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標;如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線與x軸交于A(-3,0),B(1,0)兩點,與y軸交于點C(0,-3),拋物線頂點為D,連接AD,AC,CD.
(1)求該拋物線的解析式;
(2)△ACD與△COB是否相似?如果相似,請給以證明;如果不相似,請說明理由;
(3)拋物線的對稱軸與線段AC交于點E,求△CED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)點P在x軸下方的拋物線上,且△PAB的面積等于△ABC的面積,求點P的坐標;
(3)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•岳陽一模)如圖,已知拋物線與x軸交于A(-4,0)和B(1,0)兩點,與y軸交于C(0,-2)點.
(1)求此拋物線的解析式;
(2)設(shè)G是線段BC上的動點,作GH∥AC交AB于H,連接CH,當△BGH的面積是△CGH面積的3倍時,求H點的坐標;
(3)若M為拋物線上A、C兩點間的一個動點,過M作y軸的平行線,交AC于N,當M點運動到什么位置時,線段MN的值最大,并求此時M點的坐標.

查看答案和解析>>

同步練習冊答案