【題目】關(guān)于x的一元二次方程x22x+m10有兩個(gè)實(shí)數(shù)根,則m的取值范圍是_____

【答案】m2

【解析】

根據(jù)一元二次方程有實(shí)數(shù)根,得出△≥0,建立關(guān)于m的不等式,求出m的取值范圍即可.

解:由題意知,△=44m1)≥0,

m2

故答案為:m2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(6ab)2·(3a2b)的結(jié)果是( )

A. 18a4b3B. 36a4b3C. 108a4b3D. 108a4b3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱(chēng)軸為x=1,B(3,0),C(0,-3),

(1)求二次函數(shù)y=ax2+bx+c的解析式;

(2)在拋物線對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)平行于x軸的一條直線交拋物線于M,N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=3,PB=2,PC=1,求∠BPC的度數(shù).

分析:根據(jù)已知條件比較分散的特點(diǎn),我們可以通過(guò)旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖2),然后連結(jié)PP′,這時(shí)再分別求出∠BP′P和∠AP′P的度數(shù).

解答:(1)請(qǐng)你根據(jù)以上分析再通過(guò)計(jì)算求出圖2中∠BPC的度數(shù);

(2)如圖3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=2,PB=4,PC=2,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形,依照中心對(duì)稱(chēng)和軸對(duì)稱(chēng)分類(lèi),有一個(gè)明顯與其它三個(gè)不同,則這個(gè)圖形是(

A.線段B.正方形C.等腰梯形D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AOB是一條直線,OC是∠AOD的平分線,OE 是∠BOD的平分線.

1)若∠AOE=140°,求∠AOC的度數(shù);

2)若∠EOD :∠COD=2 : 3,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm),其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面.

(1)用經(jīng)加工的圓木桿穿入旗褲作旗桿,求旗桿的最大直徑(精確到1cm);
(2)將穿好彩旗的旗桿垂直插在操場(chǎng)上,旗桿從旗頂?shù)降孛娴母叨葹?20cm,在無(wú)風(fēng)的天氣里,彩旗自然下垂,如圖②,求彩旗下垂時(shí)最低處離地面的最小高度h.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+5的圖象過(guò)A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C,作直線BC,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿CB向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng).

(1)求拋物線的表達(dá)式;

(2)如圖2,當(dāng)t=1時(shí),若點(diǎn)Q是X軸上的一個(gè)動(dòng)點(diǎn),如果以Q,P,B為頂點(diǎn)的三角形與△ABC相似,求出Q點(diǎn)的坐標(biāo);

(3)如圖3,過(guò)點(diǎn)P向x軸作垂線分別交x軸,拋物線于E、F兩點(diǎn).

①求PF的長(zhǎng)度關(guān)于t的函數(shù)表達(dá)式,并求出PF的長(zhǎng)度的最大值;

②連接BF,將△PBF沿BF折疊得到△P′BF,當(dāng)t為何值時(shí),四邊形PFP′B是菱形?

查看答案和解析>>

同步練習(xí)冊(cè)答案