【題目】如圖,直線軸,軸分別交于兩點(diǎn),且經(jīng)過(guò)點(diǎn)

1)求的值;

2)若,

①求的值;

②點(diǎn)軸上一動(dòng)點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)另一點(diǎn),若以,,為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)的坐標(biāo).

【答案】1;(2)①3;②

【解析】

1)將點(diǎn)(4,b+3)代入直線解析式中即可得出結(jié)論;
2)①先求出點(diǎn)A,B坐標(biāo),進(jìn)而得出AB,再利用AB=OB+2,即可求出b;
②分三種情況利用菱形的性質(zhì)即可得出結(jié)論.

:(1)直線y=kx+b經(jīng)過(guò)點(diǎn)(4,b+3)
4k+b=b+3,
4k=3,
k=

2)①由(1)知A,By=x+b上,

當(dāng)x=0時(shí),y=b, B(0,b),

當(dāng)y=0時(shí),x+b=0,解得x= A(,0),

OA=OB=b

AB=

AB=OB+2

=b+2

b=3

故答案為:3

②如圖,由①知,b=3,∴A(-4,0),B(0,3) AB=5

∵以A,B,M,N為頂點(diǎn)的四邊形是菱形,

所以,分3種情況:

Ⅰ、當(dāng)ABAM為兩鄰邊時(shí),BNAM,BN=AM=AB=5

N(-5,3)(5,3)

Ⅱ、當(dāng)ABBM為兩鄰邊時(shí),AMAN是對(duì)角線,∵B(0,3) N(0,-3),

Ⅲ、當(dāng)AMAN為兩鄰邊時(shí),BNAM,

設(shè)N(n,3),∴BM=AM=BN=n OM=4+n,

根據(jù)勾股定理得,n2-(4+n)2=9,
n=
N(,3)

故答案為:N(5,3)(-5,3)(0,-3)(,3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC是腰長(zhǎng)為1的等腰直角三形,以RtABC的斜邊AC為直角邊,畫(huà)第二個(gè)等腰RtACD,再以RtACD的斜邊AD為直角邊,畫(huà)第三個(gè)等腰RtADE,,依此類推,則第2018個(gè)等腰直角三角形的斜邊長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】,,,,五名同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的平均成績(jī)是80分,而,三人的平均成績(jī)是78分,下列說(shuō)法一定正確的是( )

A.兩人的平均成績(jī)是83B.,的成績(jī)比其他三人都好

C.五人成績(jī)的中位數(shù)一定是80D.五人的成績(jī)的眾數(shù)一定是80

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績(jī)/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

7

7

1.2

7

8

4.2

1)寫(xiě)出表格中的值;

2)從方差的角度看,若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?并說(shuō)明理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,點(diǎn)P在線段BC上(不含點(diǎn)B),∠BPEACB,PEBO于點(diǎn)E,過(guò)點(diǎn)BBFPE,垂足為F,交AC于點(diǎn)G

1)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)(如圖):

求證:△BOG≌△POE猜想:  ;

2)當(dāng)點(diǎn)P與點(diǎn)C不重合時(shí),如圖,的值會(huì)改變嗎?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣10),P2(﹣1,﹣1),P31,﹣1),P411),P5(﹣21),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線EF分別交平行四邊形ABCDAB、CD于直EF,將圖形沿直線EF對(duì)折,點(diǎn)A、D分別落在點(diǎn)AD處.若∠A=60°,AD=4,AB=8,當(dāng)點(diǎn)A落在BC邊上任意點(diǎn)時(shí),設(shè)點(diǎn)P為直線EF上的動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出PC+PA的最小值(

A.4+B.8C.6+D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大于的正整數(shù)的三次冪可“裂變”成若干個(gè)連續(xù)奇數(shù)的和,如,,,.若“裂變”后,其中有一個(gè)奇數(shù)是,則的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn)、開(kāi)口方向都相同,則稱這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”

1)請(qǐng)直接寫(xiě)出兩個(gè)為“同簇二次函數(shù)”的函數(shù):①______,②_________;

2)已知關(guān)于的二次函數(shù),若為“同簇二次函數(shù)”,求函數(shù)的表達(dá)式,并求出當(dāng)時(shí),的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案