小明對(duì)小華說(shuō):“我在證明‘等腰三角形兩腰上的高相等’的時(shí)候,發(fā)現(xiàn)利用“三角形的面積”很容易解決.你知道嗎?”

小華思索了一會(huì),對(duì)小明說(shuō):“這個(gè)方法真好,但我發(fā)現(xiàn)這種方法還可以用來(lái)證明‘等腰三角形底邊上的任一點(diǎn)到兩腰的距離之和等于一腰上的高’.”

小明苦苦思索,但仍沒(méi)有解決,就請(qǐng)小華幫助他,你知道小華是如何幫助小明的嗎?請(qǐng)寫(xiě)出你的思路過(guò)程.

答案:略
解析:

連底邊上一點(diǎn)與頂點(diǎn),等腰三角形分為兩個(gè)三角形,利用三角形面積公式.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、妙趣角:輔助線
問(wèn)題探討實(shí)錄片段:
老師:等腰三角形的兩個(gè)底角一定相等嗎?
同學(xué)們異口同聲:一定相等!
老師:誰(shuí)能說(shuō)說(shuō)理由?[說(shuō)著,在圖(1)上用符號(hào)分別表示了已知“等腰”的條件和“底角為何相等”的疑問(wèn).]
小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過(guò)構(gòu)造一對(duì)全等三角形來(lái)說(shuō)明∠B=∠C,所畫(huà)的這條線段AD,可以稱(chēng)它為“輔助線”.
小強(qiáng):“輔助線”,可謂名副其實(shí).
老師:上面大家探討得到:一個(gè)三角形中,如果知道兩邊相等,那么可得這兩邊的對(duì)角也相等,這可簡(jiǎn)述為“等邊對(duì)等角”.
小霞:我想也應(yīng)該有“等角對(duì)等邊”[說(shuō)著,畫(huà)出了圖(5),其中,AB、AC兩邊上的“”無(wú)疑也是在征求說(shuō)理.]
不一會(huì),爭(zhēng)先恐后的幾位同學(xué)在黑板上畫(huà)出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

老師期待的目光顯然是在說(shuō):請(qǐng)你通過(guò)觀察與思考,對(duì)上述3個(gè)圖形作一評(píng)價(jià)…

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

妙趣角:輔助線
問(wèn)題探討實(shí)錄片段:
老師:等腰三角形的兩個(gè)底角一定相等嗎?
同學(xué)們異口同聲:一定相等!
老師:誰(shuí)能說(shuō)說(shuō)理由?[說(shuō)著,在圖(1)上用符號(hào)分別表示了已知“等腰”的條件和“底角為何相等”的疑問(wèn).]
小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過(guò)構(gòu)造一對(duì)全等三角形來(lái)說(shuō)明∠B=∠C,所畫(huà)的這條線段AD,可以稱(chēng)它為“輔助線”.
小強(qiáng):“輔助線”,可謂名副其實(shí).
老師:上面大家探討得到:一個(gè)三角形中,如果知道兩邊相等,那么可得這兩邊的對(duì)角也相等,這可簡(jiǎn)述為“等邊對(duì)等角”.
小霞:我想也應(yīng)該有“等角對(duì)等邊”[說(shuō)著,畫(huà)出了圖(5),其中,AB、AC兩邊上的“”無(wú)疑也是在征求說(shuō)理.]
不一會(huì),爭(zhēng)先恐后的幾位同學(xué)在黑板上畫(huà)出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

老師期待的目光顯然是在說(shuō):請(qǐng)你通過(guò)觀察與思考,對(duì)上述3個(gè)圖形作一評(píng)價(jià)…

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

妙趣角:輔助線
問(wèn)題探討實(shí)錄片段:
老師:等腰三角形的兩個(gè)底角一定相等嗎?
同學(xué)們異口同聲:一定相等!
老師:誰(shuí)能說(shuō)說(shuō)理由?[說(shuō)著,在圖(1)上用符號(hào)分別表示了已知“等腰”的條件和“底角為何相等”的疑問(wèn).]
小明:如圖(2),如果作頂角平分線AD,那么可以根據(jù)“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小華:如圖(3),如果作底邊上的中線,那么可以根據(jù)“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如圖(4),如果作底邊上的高,那么可以根據(jù)“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老師:非常好!小明、小華和小芳所作的線段雖然名目各異,但是作用相同──都是通過(guò)構(gòu)造一對(duì)全等三角形來(lái)說(shuō)明∠B=∠C,所畫(huà)的這條線段AD,可以稱(chēng)它為“輔助線”.
小強(qiáng):“輔助線”,可謂名副其實(shí).
老師:上面大家探討得到:一個(gè)三角形中,如果知道兩邊相等,那么可得這兩邊的對(duì)角也相等,這可簡(jiǎn)述為“等邊對(duì)等角”.
小霞:我想也應(yīng)該有“等角對(duì)等邊”[說(shuō)著,畫(huà)出了圖(5),其中,AB、AC兩邊上的“”無(wú)疑也是在征求說(shuō)理.]
不一會(huì),爭(zhēng)先恐后的幾位同學(xué)在黑板上畫(huà)出了如下帶有“輔助線”的圖形[圖(6)、(7)、(8)]:

精英家教網(wǎng)

老師期待的目光顯然是在說(shuō):請(qǐng)你通過(guò)觀察與思考,對(duì)上述3個(gè)圖形作一評(píng)價(jià)…

查看答案和解析>>

同步練習(xí)冊(cè)答案