精英家教網 > 初中數學 > 題目詳情

如圖,要得到△ABC≌△ADE,除去公共角∠A外,在下列橫線上寫出還需要的兩個條件,并在括號內寫出由這種條件得到兩個三角形全等的理由.

(1)∠B=∠D,AB=AD.(ASA)

(2)________,________.(________)

(3)________,________.(________)

(4)________,________.(________)

(5)________,________.(________)

(6)________,________.(________)

答案:
解析:

  (2)AB=AD,AC=AE;SAS

  (3)∠ACB=∠AED,AC=AE.ASA

  (4)AB=AD,∠ACB=∠AED.AAS

  (5)AC=AE.∠B=∠D,AAS

  (6)BC=DE,∠B=∠D,AAS


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

4、如圖,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,還應給出的條件是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有。麄冊撛鯓优抨牪拍苁沟每偟呐抨爼r間最短?
假設只有兩個人時,設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結:
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調整這兩個人的位置,同樣介意計算兩個人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調整,從而使得總等候時間減少.這樣經過一系列調整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設計多個可變對象的數學問題,先對其少數對象進行調整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經過若干次這種局部的調整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數學思想就叫做局部調整法.
【實踐應用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時BM+MN的最小值是
4
4

【實踐應用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構成三角形,則△PQR的最大面積是
2
2
,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

探索:在圖1至圖3中,已知△ABC的面積為a,
(1)如圖1,延長△ABC的邊BC到點D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數式表示)
(2)如圖2,延長△ABC的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數式表示)
(3)在圖2的基礎上延長AB到點F,使BF=AB,連接FD,FE,得到△DEF(如圖3).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數式表示),并運用上述(2)的結論寫出理由.
發(fā)現:像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點,得到△DEF(如圖3),此時,我們稱△ABC向外擴展了一次.可以發(fā)現,擴展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.
應用:要在一塊足夠大的空地上栽種花卉,工程人員進行了如下的圖案設計:首先在△ABC的空地上種紅花,然后將△ABC向外擴展三次(圖4已給出了前兩次擴展的圖案).在第一次擴展區(qū)域內種謊話,第二次擴展區(qū)域內種紫花,第三次擴展區(qū)域內種藍花.如果種紅花的區(qū)域(即△ABC)的面積是10平方米,請你運用上述結論求出:
(1)種紫花的區(qū)域的面積;
(2)種藍花的區(qū)域的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

要測量河兩岸相對的兩點A、B的距離,先在AB的垂線BF上取兩點C、D,使CD=BC,再定出BF的垂線DE,使A、C、E在同一條直線上,如圖,可以得到△EDC≌△ABC,所以ED=AB,因此測得ED的長就是AB的長,判定△EDC≌△ABC的理由是( 。

查看答案和解析>>

同步練習冊答案