【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn)、點(diǎn),與軸交于點(diǎn),其中點(diǎn)和點(diǎn).
(1)填空:___________,________;
(2)求的面積;
(3)根據(jù)圖象回答:當(dāng)為何值時(shí),(請直接寫出答案)_____________.
【答案】(1)﹣3,1;(2)4;(3)或.
【解析】
(1)將A點(diǎn)坐標(biāo),B點(diǎn)坐標(biāo)代入解析式可求m,n的值;
(2)用待定系數(shù)法可求一次函數(shù)解析式,根據(jù)S△AOB=S△AOC﹣S△BOC可求△AOB的面積.
(3)由圖象直接可得結(jié)論.
(1)∵反比例函數(shù)y過點(diǎn)A(﹣1,3),B(﹣3,n),
∴m=3×(﹣1)=﹣3,m=﹣3n,
∴n=1.
故答案為:﹣3,1.
(2)一次函數(shù)的解析式為y=kx+b,且過(﹣1,3),B(﹣3,1),
∴,
解得:,
∴一次函數(shù)的解析式為y=x+4.
∵一次函數(shù)圖象與x軸交點(diǎn)為C,
∴0=x+4,
∴x=﹣4,
∴C(﹣4,0).
∵S△AOB=S△AOC﹣S△BOC,
∴S△AOB4×34×1=4;
(3)∵,
∴一次函數(shù)圖象在反比例函數(shù)圖象下方,
∴或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 拋物線如圖所示.已知點(diǎn)的坐標(biāo)為,過點(diǎn)作軸交拋物線于點(diǎn),過點(diǎn)作交拋物線于點(diǎn),過點(diǎn)作軸交拋物線于點(diǎn),過點(diǎn)作交拋物線于點(diǎn)…若依次進(jìn)行下去,則點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.
(1)直接寫出甲投放的垃圾恰好是A類的概率;
(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,是的角平分線,,在邊上,以為直徑的半圓經(jīng)過點(diǎn),交于點(diǎn).
(1)求證:是的切線;
(2)已知,的半徑為,求圖中陰影部分的面積.(最后結(jié)果保留根號和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有1名男生和1名女生獲得音樂獎.
(1)從獲得美術(shù)獎和音樂獎的5名學(xué)生中選取1名參加頒獎大會,剛好是男生的概率是 ;
(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;
(2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,的面積為42.
(1)如圖,若點(diǎn)分別是邊的中點(diǎn),則四邊形的面積是__________.
(2)如圖,若圖中所有的三角形均相似,其中最小的三角形面積為1,則四邊形的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,將∠ABC對折,使點(diǎn)C的對應(yīng)點(diǎn)H恰好落在直線AB上,折痕交AC于點(diǎn)O,以點(diǎn)O為坐標(biāo)原點(diǎn),AC所在直線為x軸建立平面直角坐標(biāo)系
(1)求過A、B、O三點(diǎn)的拋物線解析式;
(2)若在線段AB上有一動點(diǎn)P,過P點(diǎn)作x軸的垂線,交拋物線于M,設(shè)PM的長度等于d,試探究d有無最大值,如果有,請求出最大值,如果沒有,請說明理由.
(3)若在拋物線上有一點(diǎn)E,在對稱軸上有一點(diǎn)F,且以O、A、E、F為頂點(diǎn)的四邊形為平行四邊形,試求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com