(2012•房山區(qū)一模)已知:如圖,點P是線段AB上的動點,分別以AP、BP為邊向線段AB的同側作正△APC和正△BPD,AD和BC交于點M.
(1)當△APC和△BPD面積之和最小時,直接寫出AP:PB的值和∠AMC的度數(shù);
(2)將點P在線段AB上隨意固定,再把△BPD按順時針方向繞點P旋轉一個角度α,當α<60°時,旋轉過程中,∠AMC的度數(shù)是否發(fā)生變化?證明你的結論.
(3)在第(2)小題給出的旋轉過程中,若限定60°<α<120°,∠AMC的大小是否會發(fā)生變化?若變化,請寫出∠AMC的度數(shù)變化范圍;若不變化,請寫出∠AMC的度數(shù).
分析:(1)設AP的長是x,然后利用x表示出兩個三角形的面積的和,利用二次函數(shù)的性質即可求得x的值,從而求得兩線段的比值;
(2)首先證得△APD≌△CPB,然后根據(jù)三角形的外角的性質即可求解;
(3)旋轉的過程中,(2)中得兩個三角形的全等關系不變,因而角度不會變化.
解答:解:(1)設AB=2a,AP的長是x,則BP=2a-x,
∴S△APC+S△PBD=
1
2
x•
3
2
x+
1
2
(2a-x)•
3
2
(2a-x)
=
3
2
x2-
3
ax+
3
a2
當x=-
b
2a
=-
-
3
a
3
2
=a時△APC與△PBD的面積之和取最小值,
∴AP:PB=a:a=1
當AP=BP時,
AM=AC且AM平分∠CAB,
此時∠MAB=∠MBA=30°,
∠AMC=2∠MAB=2×30°=60°,
故答案為:1,60°;
                     
(2)不變化.
證明:如圖,點E在AP的延長線上,
∠BPE=α<60°.(只要畫出了符合題意的圖形即可得分) 
∵∠BPC=∠CPD+60°,
∠DPA=∠CPD+60°,
∴∠BPC=∠DPA.
在△BPC和△DPA中,
又∵BP=DP,PC=PA,
∴△BPC≌△DPA.…(4分)
∴∠BCP=∠DAP.
∴∠AMC=180°-∠MCP-∠PCA-∠MAC
=120°-∠BCP-∠MAC
=120°-(∠DAP+∠MAC)-∠PCA
=120°-∠PAC
=60°,且與α的大小無關.…(6分)

(3)此時α的大小不會發(fā)生改變,始終等于60°.
理由:∵△APC是等邊三角形,
∴PA=PC,∠APC=60°,
∵△BDP是等邊三角形,
∴PB=PD,∠BPD=60°,
∴∠APC=∠BPD,
∴∠APD=∠CPB,
∴△APD≌△CPB,
∴∠PAD=∠PCB,
∵∠QAP+∠QAC+∠ACP=120°,
∴∠QCP+∠QAC+∠ACP=120°,
∴∠AQC=180°-120°=60°.
點評:本題考查了旋轉的性質,以及全等三角形的判定與性質,正確證明兩個三角形全等是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)如圖,點F在線段AB上,AD∥BC,AC交DF于點E,∠BAC=∠ADF,AE=BC.
求證:△ACD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)下列每兩個數(shù)中,互為相反數(shù)的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)已知某多邊形的每一個外角都是72°,則它的邊數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)計算:(
1
5
)-1
-4cos45°+|1-
2
|
-(-2012)0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)如圖1,在△ABC中,∠ACB=90°,AC=BC=
5
,以點B為圓心,以
2
為半徑作圓.
(1)設點P為⊙B上的一個動點,線段CP繞著點C順時針旋轉90°,得到線段CD,連接DA,DB,PB,如圖2.求證:AD=BP;
(2)在(1)的條件下,若∠CPB=135°,則BD=
2
2
或2
2
2
或2
;
(3)在(1)的條件下,當∠PBC=
135
135
° 時,BD有最大值,且最大值為
10
+
2
10
+
2
;當∠PBC=
45
45
° 時,BD有最小值,且最小值為
10
-
2
10
-
2

查看答案和解析>>

同步練習冊答案