【題目】下面的一元二次方程中,一次項(xiàng)系數(shù)為5的方程是( )
A.5x2﹣5x+1=0
B.3x2+5x+1=0
C.3x2﹣x+5=0
D.5x2﹣x=5

【答案】B
【解析】解:A、5x2﹣5x+1=0,一次項(xiàng)系數(shù)為﹣5,故此選項(xiàng)錯(cuò)誤;
B、3x2+5x+1=0,一次項(xiàng)系數(shù)為5,故此選項(xiàng)正確;
C、3x2﹣x+5=0,一次項(xiàng)系數(shù)為﹣1,故此選項(xiàng)錯(cuò)誤;
D、5x2﹣x=5,一次項(xiàng)系數(shù)為﹣1,故此選項(xiàng)錯(cuò)誤;
故選:B.
【考點(diǎn)精析】本題主要考查了一元二次方程的定義的相關(guān)知識(shí)點(diǎn),需要掌握只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程為一元二次方程才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若代數(shù)式x2+2x﹣1的值為0,則2x2+4x﹣1的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣某初中學(xué)校舉辦經(jīng)典誦讀比賽,13名學(xué)生進(jìn)入決賽,他們所得分?jǐn)?shù)互不相同,比賽共設(shè)7個(gè)獲獎(jiǎng)名額,某學(xué)生知道自己的分?jǐn)?shù)后,要判斷自己能否獲獎(jiǎng),他應(yīng)該關(guān)注的統(tǒng)計(jì)量是(  )

A. 眾數(shù)B. 中位數(shù)C. 平均數(shù)D. 方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)自然數(shù)若能表示為兩個(gè)自然數(shù)的平方差,則這個(gè)自然數(shù)稱為“智慧數(shù)”.比如:22﹣12=3,則3就是智慧數(shù);22﹣02=4,則4就是智慧數(shù).
(1)從0開始第7個(gè)智慧數(shù)是 v;
(2)不大于200的智慧數(shù)共有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB垂直于弦CD,垂足為點(diǎn)E,過點(diǎn)CO 的切線,交AB的延長線于點(diǎn)P,聯(lián)結(jié)PD

1)判斷直線PDO的位置關(guān)系,并加以證明;

2)聯(lián)結(jié)CO并延長交O于點(diǎn)F,聯(lián)結(jié)FPCD于點(diǎn)G,如果CF=10,cosAPC=,求EG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2mx﹣3m≠0)與x軸交于A3,0),B兩點(diǎn).

1)求拋物線的表達(dá)式及點(diǎn)B的坐標(biāo);

2)當(dāng)﹣2x3時(shí)的函數(shù)圖象記為G,求此時(shí)函數(shù)y的取值范圍;

3)在(2)的條件下,將圖象Gx軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個(gè)新圖象M.若經(jīng)過點(diǎn)C4.2)的直線y=kx+bk≠0)與圖象M在第三象限內(nèi)有兩個(gè)公共點(diǎn),結(jié)合圖象求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若代數(shù)式x2-8x+a可化為(x-b)2+1,則a+b=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長QC′交BA的延長線于點(diǎn)M.

(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時(shí),求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,AC,BD交于點(diǎn)O,若AB=6,AC=8,則BD的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案