【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據調查結果繪制了兩幅不完整的統(tǒng)計圖.根據圖中提供的信息,解答下列問題:

(1)這次調查的學生共有多少名?

(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).

(3)如果要在這5個主題中任選兩個進行調查,根據(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

【答案】(1280;(2108°;(3

【解析】試題分析:(1)根據“平等”的人數(shù)除以占的百分比得到調查的學生總數(shù)即可;

(2)求出“互助”與“進取”的學生數(shù),補全條形統(tǒng)計圖,求出“進取”占的圓心角度數(shù)即可;

(3)列表或畫樹狀圖得出所有等可能的情況數(shù),找出恰好選到“C”與“E”的情況數(shù),即可求出所求的概率.

試題解析:(1)56÷20%=280(名),答:這次調查的學生共有280名;

(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),

補全條形統(tǒng)計圖,如圖所示,

根據題意得:84÷280=30%,360°×30%=108°,

答:“進取”所對應的圓心角是108°;

(3)由(2)中調查結果知:學生關注最多的兩個主題為“進取”和“感恩”用列表法為:

A

B

C

D

E

A

(A,B)

(A,C)

(A,D)

(A,E)

B

(B,A)

(B,C)

(B,D)

(B,E)

C

(C,A)

(C,B)

(C,D)

(C,E)

D

(D,A)

(D,B)

(D,C)

(D,E)

E

(E,A)

(E,B)

(E,C)

(E,D)

用樹狀圖為:

共20種情況,恰好選到“C”和“E”有2種,

∴恰好選到“進取”和“感恩”兩個主題的概率是0.1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店在甲批發(fā)市場以每包m元的價格進了40包茶葉,又在乙批發(fā)市場以每包n元(m>n)的價格進了同樣的60包茶葉,如果商家以每包 元的價格賣出這種茶葉,賣完后,這家商店( )
A.盈利了
B.虧損了
C.不贏不虧
D.盈虧不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一副三角板的直角頂點O重疊在一起.

(1)問題發(fā)現(xiàn):如圖①,當OB平分∠COD時,∠AOD+∠BOC的度數(shù)是
(2)拓展探究:如圖②,當OB不平分∠COD時,∠AOD+∠BOC的度數(shù)是多少?
(3)問題解決:當∠BOC的余角的4倍等于∠AOD時,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE.求證:

(1)∠CEB=∠CBE;

(2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)29×20.18+72×20.18+13×20.18-14×20.18;

(2)1002-992+982-972+…+42-32+22-12.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的四邊相等,且面積為120cm2 , 對角線AC=24cm,則四邊形ABCD的周長為(
A.52cm
B.40cm
C.39cm
D.26cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次三項式x2-4x+3配方的結果是(  )
A.(x-2)2+7
B.(x-2)2-1
C.(x+2)2+7
D.(x+2)2-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P關于x軸的對稱點P1的坐標是(21),那么點P關于原點的對稱點P2的坐標是( 。

A. ﹣1,﹣2 B. 2,﹣1 C. ﹣2,﹣1 D. ﹣2,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若△ABC∽△A′B′C′,相似比為1:3,則△ABC與△A′B′C′的面積之比為

查看答案和解析>>

同步練習冊答案