如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)分別在軸,軸的正半軸上,且滿足

(1)求點(diǎn),點(diǎn)的坐標(biāo).
(2)若點(diǎn)點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿射線運(yùn)動(dòng),連結(jié).設(shè)的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,求的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點(diǎn),使以點(diǎn)為頂點(diǎn)的三角形與相似?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)A(1,0),B(0,)(2)(3);;
解:(1)
,······················· (1分)
,
點(diǎn),點(diǎn)分別在軸,軸的正半軸上
··························· (2分)
(2)求得························· (3分)

(每個(gè)解析式各1分,兩個(gè)取值范圍共1分)················ (6分)
(3);;;(每個(gè)1分,計(jì)4分)
(1)根據(jù)條件,可求得OB=,OA=1,根據(jù)圖象可知A(1,0),B(0, );
(2)在直角三角形中的勾股定理和動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間和速度分別把相關(guān)的線段表示出來(lái),設(shè)CP=t,過(guò)P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=,S=SABC-SAPC=-t
(3)由于∠ABP=∠AOB=90°,所以分兩種情況討論:①△ABP∽△AOB;②△ABP∽△BOA.可知滿足條件的有四個(gè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD//CO。

(1)求證:△ADB∽△OBC;
(2)若AB=2,BC=,求AD的長(zhǎng)。(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,E為AD的中點(diǎn),EF⊥EC交AB于F,連結(jié)FC(AB>AE).

(1)△AEF與△EFC是否相似?若相似,證明你的結(jié)論;若不相似,請(qǐng)說(shuō)明理由;
(2)設(shè)=k,是否存在這樣的k值,使得△AEF與△BFC相似,若存在,證明你的結(jié)論并求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果兩個(gè)相似三角形對(duì)應(yīng)高的比是1:2,那么它們的面積比是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在矩形ABCD中, 點(diǎn)E為邊BC的中點(diǎn),  AE⊥BD,垂足為點(diǎn)O, 則的值等于     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為斜邊作等腰直角三角形,再以為斜邊在外側(cè)作等腰直角三角形,如此繼續(xù),得到8個(gè)等腰直角三角形(如圖),則圖中的面積比值是(   )
A.32B.64C.128D.256

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將三角形紙片(△ ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′,F(xiàn),C為頂點(diǎn)的三角形與△ ABC相似,那么BF的長(zhǎng)度是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知△ABC,P是邊AB上的一點(diǎn),連結(jié)CP,以下條件中不能確定△ACP與△ABC相似的是(   )
A.∠ACP=∠BB.∠APC="∠ACB"
C.AC2=AP·ABD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題是真命題的有
①若a>b,則ac2>bc2
②內(nèi)錯(cuò)角相等
=
④分式方程一定有增根
⑤所有正方形都相似
⑥點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>BC),若AC=2,則AB·BC=4
A. 1個(gè)    B. 2個(gè)    C. 3個(gè)    D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案