【題目】如圖,在平面直角坐標(biāo)系中,ABC的一邊ABx軸上,ABC=90°,點(diǎn)C(4,8)在第一象限內(nèi),ACy軸交于點(diǎn)E,拋物線y= +bx+c經(jīng)過A. B兩點(diǎn),y軸交于點(diǎn)D(0,6).

(1)請(qǐng)直接寫出拋物線的表達(dá)式;

(2)ED的長(zhǎng);

(3)點(diǎn)Px軸下方拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m,△PAC的面積為S,試求出Sm的函數(shù)關(guān)系式;

(4)若點(diǎn)Mx軸上一點(diǎn)(不與點(diǎn)A重合),拋物線上是否存在點(diǎn)N,使∠CAN=MAN.若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由。

【答案】1;(2DE=+6=;(3S= (2<m<4);(4N點(diǎn)坐標(biāo)為( );( )

【解析】

1)先確定B4,0),再利用待定系數(shù)法求出拋物線解析式為

2)先利用待定系數(shù)法求得直線AC的解析式為y= ,則可確定E0, ),然后計(jì)算DE的長(zhǎng);

3)如圖1,作PQy軸交ACQ,設(shè)Pm-6),則Qm,),則PQ=-,然后根據(jù)三角形面積公式,利用S=SPAQ+SPCQ計(jì)算即可;

4)如圖2,當(dāng)點(diǎn)Mx的正半軸,ANBCF,作FHACH,根據(jù)角平分線的性質(zhì)得FH=FB,易得AH=AB=6,再利用∠ACB的余弦可求出CF=5,則F4,3),接著求出直線AF的解析式為y=x+1,于是通過解方程組 N點(diǎn)坐標(biāo)為( );當(dāng)點(diǎn)M′x的負(fù)半軸上時(shí),AN′y軸與G,先在證明RtOAGRtBFA,在利用相似比求出OG=4,所以G0,-4),接下來利用待定系數(shù)法求出直線AG的解析式為y=-2x-4,然后解方程組 N的坐標(biāo).

(1)BCx,點(diǎn)C(4,8)

B(4,0),

B(4,0),C(0,6)代入y=+bx+c ,解得

∴拋物線解析式為;

(2)設(shè)直線AC的解析式為y=px+q,

A(2,0),C(4,8)代入得 ,解得 ,

∴直線AC的解析式為y=,

當(dāng)x=0時(shí),y== ,E(0, ),

DE=+6= ;

(3)如圖1,PQy軸交ACQ,

設(shè)Pm-6),則Qm,),

PQ=-,

S=SPAQ+S△PCQ=6PQ= (2<m<4);

(4)如圖2,當(dāng)點(diǎn)Mx的正半軸,ANBCF,FHACH,FH=FB,

易得AH=AB=6

AC== =10

CH=106=4,

cosACB= ,

CF= =5,

F(4,3),

易得直線AF的解析式為y= x+1,

解方程組

N點(diǎn)坐標(biāo)為();

當(dāng)點(diǎn)M′x的負(fù)半軸上時(shí),AN′y軸與G

∵∠CAN′=M′AN′,

∴∠KAM′=CAK,

而∠CAN=MAN

∴∠KAC+CAN=90°,

而∠MAN+AFB=90°,

∴∠KAC=AFB,

而∠KAM′=GAO,

∴∠GAO=AFB

RtOAGRtBFA,

, ,解得OG=4,

G(0,4)

易得直線AG的解析式為y=2x4,

解方程組

N′的坐標(biāo)為(),

綜上所述,滿足條件的N點(diǎn)坐標(biāo)為( );( )

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB1cm/s的速度向點(diǎn)B移動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC2cm/s的速度向點(diǎn)C移動(dòng),幾秒種后DPQ的面積為31cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊙O的一條弦,AP⊙O的切線。作BM=AB并與AP交于點(diǎn)M,延長(zhǎng)MBAC于點(diǎn)E,交⊙O于點(diǎn)D,連接AD.

1)求證:AB=BE;

2)若⊙O的半徑R=5AB=6,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車油箱中有汽油.如果不再加油,那么油箱中的油量(單位:)隨行駛路程(單位:)的增加而減少.已知該汽車平均耗油量為.

(Ⅰ)計(jì)算并填寫下表:

(單位:

10

100

300

(單位:

(Ⅱ)寫出表示的函數(shù)關(guān)系式,并指出自變量的取值范圍;

(Ⅲ)若兩地的路程約有,當(dāng)油箱中油量少于時(shí),汽車會(huì)自動(dòng)報(bào)警,則這輛汽車在由地到地,再由地返回地的往返途中,汽車是否會(huì)報(bào)警?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)某中學(xué)組織學(xué)生去福利院慰問,在準(zhǔn)備禮品時(shí)發(fā)現(xiàn),購買1個(gè)甲禮品比購買1個(gè)乙禮品多花40元,并且花費(fèi)600元購買甲禮品和花費(fèi)360元購買乙禮品的數(shù)量相等.

(1)求甲、乙兩種禮品的單價(jià)各為多少元?

(2)學(xué)校準(zhǔn)備購買甲、乙兩種禮品共30個(gè)送給福利院的老人,要求購買禮品的總費(fèi)用不超過2000元,那么最多可購買多少個(gè)甲禮品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一,拋物線三點(diǎn)

1)求該拋物線的解析式;

2兩點(diǎn)均在該拋物線上,若,求點(diǎn)橫坐標(biāo)的取值范圍;

3)如圖二,過點(diǎn)軸的平行線交拋物線于點(diǎn),該拋物線的對(duì)稱軸與軸交于點(diǎn),連結(jié),點(diǎn)為線段的中點(diǎn),點(diǎn)分別為直線上的動(dòng)點(diǎn),求周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,A、B均為格點(diǎn).

(I).的長(zhǎng)等于_________

(II).請(qǐng)用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點(diǎn),使得以為底邊的等腰三角形的面積等于,并簡(jiǎn)要說明點(diǎn)的位置是如何找到的(不要求證明)_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):

萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,Rr分別為外接圓和內(nèi)切圓的半徑,OI分別為其外心和內(nèi)心,則.

如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點(diǎn)F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點(diǎn))與內(nèi)心I(三角形三條角平分線的交點(diǎn))之間的距離OI=d,則有d2=R2﹣2Rr.

下面是該定理的證明過程(部分):

延長(zhǎng)AI⊙O于點(diǎn)D,過點(diǎn)I⊙O的直徑MN,連接DM,AN.

∵∠D=∠N,∠DMI=∠NAI(同弧所對(duì)的圓周角相等),

∴△MDI∽△ANI,

①,

如圖2,在圖1(隱去MDAN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BDBI,IF

∵DE⊙O的直徑,∴∠DBE=90°,

∵⊙IAB相切于點(diǎn)F∴∠AFI=90°,

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所對(duì)圓周角相等),

∴△AIF∽△EDB,

,②,

任務(wù):(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);

(2)請(qǐng)判斷BDID的數(shù)量關(guān)系,并說明理由;

(3)請(qǐng)觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;

(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠制作兩種手工藝品,每天每件獲利比105元,獲利30元的與獲利240元的數(shù)量相等.

1)制作一件和一件分別獲利多少元?

2)工廠安排65人制作,兩種手工藝品,每人每天制作21.現(xiàn)在在不增加工人的情況下,增加制作.已知每人每天可制作1(每人每天只能制作一種手工藝品),要求每天制作,兩種手工藝品的數(shù)量相等.設(shè)每天安排人制作人制作,寫出之間的函數(shù)關(guān)系式.

3)在(1)(2)的條件下,每天制作不少于5件.當(dāng)每天制作5件時(shí),每件獲利不變.若每增加1件,則當(dāng)天平均每件獲利減少2元.已知每件獲利30元,求每天制作三種手工藝品可獲得的總利潤(rùn)(元)的最大值及相應(yīng)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案