【題目】如圖,點(diǎn)A,B,C在⊙O上,∠ABC=29°,過(guò)點(diǎn)C作⊙O的切線交OA的延長(zhǎng)線于點(diǎn)D,則∠D的大小為( )

A.29°
B.32°
C.42°
D.58°

【答案】B
【解析】解:作直徑B′C,交⊙O于B′,連接AB′,

則∠AB′C=∠ABC=29°,
∵OA=OB′,
∴∠AB′C=∠OAB′=29°.
∴∠DOC=∠AB′C+∠OAB′=58°.
∵CD是⊙的切線,
∴∠OCD=90°.
∴∠D=90°﹣58°=32°.
故答案為:B.
根據(jù)切線的性質(zhì)圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑可作輔助線,作直徑B′C,交⊙O于B′,連接AB′,則∠OCD=90°.由同弧所對(duì)的圓周角相等可得∠AB′C=∠ABC,∠DOC的度數(shù)可求,由直角三角形兩銳角互余可求∠D的度數(shù)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象分別與軸,軸交于,以線段為邊在第一象限內(nèi)作等腰直角三角形,使

1)分別求點(diǎn)的坐標(biāo);

2)在軸上求一點(diǎn),使它到兩點(diǎn)的距離之和最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,則下列結(jié)論中錯(cuò)誤的是(
A.BE=4
B.∠F=30°
C.AB∥DE
D.DF=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,分別是,的中點(diǎn),,延長(zhǎng)到點(diǎn)F,使得,連結(jié)

1)求證:四邊形是菱形;

2)若,,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線ABx軸交于點(diǎn)A1,0),與y軸交于點(diǎn)B0-2).

1)求直線AB的表達(dá)式;

2)若直線AB上有一動(dòng)點(diǎn)C,且,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EFAD,∠1=∠2,∠BAC=70°。將求∠AGD的過(guò)程填寫完整,并將依據(jù)填到相應(yīng)的括號(hào)內(nèi).

解:∵EFAD( )

∴∠2= 。( )

又∵∠1=∠2,( )

∴∠1=∠3。( )

AB 。( )

∴∠BAC+ =180。( )

又∵∠BAC=70°,

∴∠AGD= 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,則BEDF有何位置關(guān)系?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了增強(qiáng)學(xué)生對(duì)中華優(yōu)秀傳統(tǒng)文化的理解,決定購(gòu)買一批相關(guān)的書籍.據(jù)了解,經(jīng)典著作的單價(jià)比傳說(shuō)故事的單價(jià)多6元,用10000元購(gòu)買經(jīng)典著作與用7000元購(gòu)買傳說(shuō)故事的本數(shù)相同,這兩類書籍的單價(jià)各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,, ,, 垂足為,在平行四邊形的邊上有一點(diǎn),且.將平行四邊形折疊,使點(diǎn)與點(diǎn)合,折痕所在直線與平行四邊形交于點(diǎn)、

(1)求的長(zhǎng);

(2)請(qǐng)補(bǔ)全圖形并求折痕的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案