分析 (1)由特殊三角函數(shù)值sin∠OCB=$\frac{\sqrt{2}}{2}$,求得∠OCB=45°,根據(jù)同圓的半徑相等得:OB=OC,利用等邊對等角得:∠OCB=∠OBC=45°,所以∠BOC=90°,最后由平行四邊形的對邊平行和平行線性質(zhì)得:
∠BOC=∠ABO=90°,AB與⊙O相切;
(2)根據(jù)勾股定理求⊙O的半徑長,再利用差求陰影部分的面積.
解答 (1)證明:連接OB,
∵sin∠OCB=$\frac{\sqrt{2}}{2}$,
∴∠OCB=45°,
∵OB=OC,
∴∠OCB=∠OBC=45°,
∴∠BOC=90°,
∵四邊形OABC是平行四邊形,
∴AB∥OC,
∴∠BOC=∠ABO=90°,
∵B在⊙O上,
∴AB與⊙O相切;
解:(2)設(shè)⊙O的半徑為r,則OB=OC=r,
在Rt△OBC中,r2+r2=102,
∴r=5$\sqrt{2}$,
∴S陰影部分=S扇形OBC-S△OBC=$\frac{90π×(5\sqrt{2})^{2}}{360}$-$\frac{1}{2}$×$(5\sqrt{2})^{2}$=$\frac{25}{2}$π-25,
答:⊙O的半徑長5$\sqrt{2}$,陰影部分的面積為$\frac{25}{2}π-25$.
點評 本題考查了切線的判定、平行四邊形的性質(zhì)、三角函數(shù)值、扇形的面積;明確兩種證明切線的方法:①無交點,作垂線段,證半徑;②有交點,作半徑,證垂線;熟記扇形的面積公式,并掌握特殊的三角函數(shù)值.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com