【題目】如圖,C為線(xiàn)段AE上一動(dòng)點(diǎn)(不與A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ,以下五個(gè)結(jié)論:①AD=BE;PQAE;CP=CQ;BO=OE;⑤∠AOB=60°,恒成立的結(jié)論有

A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤

【答案】C

【解析】

①根據(jù)全等三角形的判定方法,證出ACD≌△BCE,即可得出AD=BE.
③先證明ACP≌△BCQ,即可判斷出CP=CQ,③正確;
②根據(jù)∠PCQ=60°,可得PCQ為等邊三角形,證出∠PQC=DCE=60°,得出PQAE,②正確.
④沒(méi)有條件證出BO=OE,得出④錯(cuò)誤;
⑤∠AOB=DAE+AEO=DAE+ADC=DCE=60°,⑤正確;即可得出結(jié)論.

ABCCDE都是等邊三角形,

AC=BC,CD=CE,ACB=DCE=60,

∴∠ACB+BCD=DCE+BCD,

∴∠ACD=BCE,

ACDBCE,

ACDBCE(SAS),

AD=BE,結(jié)論①正確,

ACDBCE

∴∠CAD=CBE,

又∵

ACPBCQ,

ACPBCQ(AAS),

CP=CQ,結(jié)論③正確;

又∵

PCQ為等邊三角形,

PQAE,結(jié)論②正確,

ACDBCE

∴∠ADC=AEO

∴結(jié)論⑤正確.沒(méi)有條件證出BO=OE,④錯(cuò)誤;

綜上,可得正確的結(jié)論有4個(gè):①②③⑤.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本學(xué)期學(xué)習(xí)了一元一次方程的解法,下面是林林同學(xué)的解題過(guò)程:解方程=1

解:方程兩邊同時(shí)乘以6,得:×6=1×6…………第①步

去分母,得:22x+1-x+2=6………………第②步

去括號(hào),得:4x+2-x+2=6…………………第③步

移項(xiàng),得:4x-x=6-2-2…………………第④步

合并同類(lèi)項(xiàng),得:3x=2…………………………第⑤步

系數(shù)化1,得:x=…………………………第⑥步

上述林林的解題過(guò)程從第______步開(kāi)始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是______

請(qǐng)你幫林林改正錯(cuò)誤,寫(xiě)出完整的解題過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè)(記為A1 , A2 , A3),黑球2個(gè)(記為B1 , B2).
(1)若先從袋中取出m(m>0)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,填空:①若A為必然事件,則m的值為
②若A為隨機(jī)事件,則m的取值為
(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用樹(shù)狀圖或列表法求這個(gè)事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)平面內(nèi)將一副三角板按如圖1所示擺放,EBC= °;

(2)平面內(nèi)將一副三角板按如圖2所示擺放,若EBC=165°,那么α= °;

(3)平面內(nèi)將一副三角板按如圖3所示擺放,EBC=115°,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線(xiàn)段AC為⊙O的直徑,PA為⊙O的切線(xiàn),切點(diǎn)為A,B為⊙O上一點(diǎn),且BC∥PO.

(1)求證:PB為⊙O的切線(xiàn);
(2)若⊙O的半徑為1,PA=3,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1,∠2互為補(bǔ)角,且∠3=B,

(1)求證:∠AFE=ACB

(2)CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)明代著名數(shù)學(xué)家程大位的《算法統(tǒng)宗》一書(shū)中記載了一些詩(shī)歌形式的算題,其中有一個(gè)“百羊問(wèn)題”甲趕群羊逐草茂,乙拽肥羊一只隨其后;戲問(wèn)甲及一百否?甲云所說(shuō)無(wú)差謬,若得這般一群湊再添半群小半群,得你一只來(lái)方湊.玄機(jī)奧妙誰(shuí)猜透.題目的意思是甲趕了一群羊在草地上往前走,乙牽了一只肥羊緊跟在甲的后面.乙問(wèn)甲“你這群羊有一百只嗎?”甲說(shuō)“如果再有這么一群,再加半群又加四分之一群,再把你的一只湊進(jìn)來(lái),才滿(mǎn)100只.”請(qǐng)問(wèn)甲原來(lái)趕的羊一共有多少只?如果設(shè)甲原來(lái)趕的羊一共有,那么可列方程______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面推理過(guò)程

如圖,已知DEBC,DF、BE分別平分∠ADE、ABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DF、BE分別平分∠ADEABC,

∴∠ADF=      

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACB和△ECD都是等腰直角三角形,△ACB的頂點(diǎn)A在△ECD的斜邊DE上,

求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案