【題目】某水果批發(fā)市場新進一批水果,有蘋果、西瓜、桃子和香蕉四個品種,統(tǒng)計后將結果繪制成條形圖(如圖),已知西瓜的重量占這批水果總重量的40%. 回答下列問題:

(1)這批水果總重量為kg;
(2)請將條形圖補充完整;
(3)若用扇形圖表示統(tǒng)計結果,則桃子所對應扇形的圓心角為度.

【答案】
(1)4000
(2)解:∵蘋果的重量=總重量﹣西瓜的重量﹣桃子的重量﹣香蕉西瓜的重量=4000﹣1600﹣1000﹣200=1200,

條形圖如圖所示,


(3)90
【解析】解:(1)設這批水果總重量為mkg, 應用m40%=1600,
解得m=4000kg,
所以答案是4000.
3)∵桃子的重量占這批水果總重量的= =25%,
∴桃子所對應扇形的圓心角為360°×25%=90°,
所以答案是90.
【考點精析】解答此題的關鍵在于理解扇形統(tǒng)計圖的相關知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學課外活動小組測量電視塔AB的高度.他們借助一個高度為30m的建筑物CD進行測量,在點C處測得塔頂B的仰角為45°,在點E處測得B的仰角為37°(B、D、E三點在一條直線上).求電視塔的高度h.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON∠AOC的平分線,OM∠BOC的平分線.

1)求∠MON的大小.

2)當銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為更好地開展“傳統(tǒng)文化進校園”活動,隨機抽查了部分學生,了解他們最喜愛的傳統(tǒng)文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖. 最喜愛的傳統(tǒng)文化項目類型頻數(shù)分布表

項目類型

頻數(shù)

頻率

書法類

18

a

圍棋類

14

0.28

喜劇類

8

0.16

國畫類

b

0.20

根據(jù)以上信息完成下列問題:

(1)直接寫出頻數(shù)分布表中a的值;
(2)補全頻數(shù)分布直方圖;
(3)若全校共有學生1500名,估計該校最喜愛圍棋的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量某建筑物MN的高度,在平地上A處測得建筑物頂端M的仰角為30°,向N點方向前進16m到達B處,在B處測得建筑物頂端M的仰角為45°,則建筑物MN的高度等于( )

A.8( )m
B.8( )m
C.16( )m
D.16( )m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,點C(3,0),函數(shù)y= (k>0,x>0)的圖象經過OABC的頂點A(m,n)和邊BC的中點D.

(1)求m的值;
(2)若△OAD的面積等于6,求k的值;
(3)若P為函數(shù)y═ (k>0,x>0)的圖象上一個動點,過點P作直線l⊥x軸于點M,直線l與x軸上方的OABC的一邊交于點N,設點P的橫坐標為t,當 時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中裝有1個紅球、1個黃球和1個白球,這些球除顏色外都相同
(1)攪勻后從袋子中任意摸出1個球,求摸到紅球的概率;
(2)攪勻后從袋子中任意摸出1個球,記錄顏色后放回、攪勻,再從中任意摸出1個球,求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上的一點,∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點B是EF的中點,求證:以A、B、C為頂點的三角形與△AEF相似;
(3)已知AF=4,CF=2.在(2)條件下,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點E為邊BC的中點,點P在對角線BD上移動,則PE+PC的最小值是

查看答案和解析>>

同步練習冊答案