【題目】如圖,已知對(duì)稱(chēng)軸為直線(xiàn)的拋物線(xiàn)軸交于、兩點(diǎn),與軸交于C點(diǎn),其中.

1)求點(diǎn)B的坐標(biāo)及此拋物線(xiàn)的表達(dá)式;

2)點(diǎn)Dy軸上一點(diǎn),若直線(xiàn)BD和直線(xiàn)BC的夾角為15,求線(xiàn)段CD的長(zhǎng)度;

3)設(shè)點(diǎn)為拋物線(xiàn)的對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)為直角三角形時(shí),求點(diǎn)的坐標(biāo).

【答案】1,;(2CD=;(3的坐標(biāo)為.

【解析】

1)將A、C坐標(biāo)代入拋物線(xiàn),結(jié)合拋物線(xiàn)的對(duì)稱(chēng)軸,解得ab、c的值,求得拋物線(xiàn)解析式;

2)求出直線(xiàn)BC的解析式為,得出∠CBA=45°再求出∠DBA=30°或∠DBA=60°,再求出DO即可;

3)設(shè)點(diǎn)P的坐標(biāo),分別以BC、P為直角頂點(diǎn),進(jìn)行分類(lèi)討論,再運(yùn)用勾股定理得到方程式進(jìn)行求解.

解:(1)根據(jù)對(duì)稱(chēng)軸x=-1,A(1,0),得出B為(-3,0)

依題意得:,解之得:,

∴拋物線(xiàn)的解析式為.

2)∵對(duì)稱(chēng)軸為,且拋物線(xiàn)經(jīng)過(guò),∴

∴直線(xiàn)BC的解析式為. ∠CBA=45°

∵直線(xiàn)BD和直線(xiàn)BC的夾角為15, ∴∠DBA=30°或∠DBA=60°

在△BOD,,BO=3

DO=,∴CD=.

3)設(shè),又,,

,,,

①若點(diǎn)為直角頂點(diǎn),則即:解之得:,

②若點(diǎn)為直角頂點(diǎn),則即:解之得:,

③若點(diǎn)為直角頂點(diǎn),則即:解之得:

,.

綜上所述的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線(xiàn)AC交于點(diǎn)M,過(guò)M作MECD于點(diǎn)E,1=2.

(1)若CE=1,求BC的長(zhǎng);

(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在同一直線(xiàn)噵路上同起點(diǎn),同方向同進(jìn)出發(fā),分別以不同的速度勻速跑步1500米,當(dāng)甲超出乙200米時(shí),甲停下來(lái)等候乙,甲、乙會(huì)合后,兩人分別以原來(lái)的速度繼續(xù)跑向終點(diǎn),先到達(dá)終點(diǎn)的人在終點(diǎn)休息,在跑步的整個(gè)過(guò)程中,甲、乙兩人的距離y(米)與出發(fā)的時(shí)間x(秒)之間的關(guān)系如圖所示,則甲到終點(diǎn)時(shí),乙距離終點(diǎn)______________米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程(2m+1x2+4mx+2m30有兩個(gè)不相等的實(shí)數(shù)根.

1)求m的取值范圍;

2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)之和等于﹣1?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知:AB是圓O的直徑,AB=10,點(diǎn)C為圓O上異于點(diǎn)A、B的一點(diǎn),點(diǎn)M為弦BC的中點(diǎn).

1)如果AMOC于點(diǎn)E,求OECE的值;

2)如果AMOC于點(diǎn)E,求∠ABC的正弦值;

3)如果ABBC=54,DBC上一動(dòng)點(diǎn),過(guò)DDFOC,交OC于點(diǎn)H,與射線(xiàn)BO交于圓內(nèi)點(diǎn)F,請(qǐng)完成下列探究.

探究一:設(shè)BD=x,FO=y,求y關(guān)于x的函數(shù)解析式及其定義域.

探究二:如果點(diǎn)D在以O為圓心,OF為半徑的圓上,寫(xiě)出此時(shí)BD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn) 軸、軸分別交于點(diǎn)A、B如圖所示,點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上,且

1)用含字母的代數(shù)式表示點(diǎn)的坐標(biāo);

2)拋物線(xiàn)y經(jīng)過(guò)點(diǎn),求此拋物線(xiàn)的表達(dá)式;

3)在第(2)題的條件下,位于第四象限的拋物線(xiàn)上,是否存在這樣的點(diǎn):使,如果存在,求出點(diǎn)的坐標(biāo),如果不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代第一部自成體系的數(shù)學(xué)專(zhuān)著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.書(shū)中記載:今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?譯為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長(zhǎng)1尺(AB=1=10寸),問(wèn)這塊圓形木材的直徑是多少?

如圖所示,請(qǐng)根據(jù)所學(xué)知識(shí)計(jì)算:圓形木材的直徑AC是(  )

A. 13 B. 20 C. 26 D. 28

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知ABBC于點(diǎn)B,底座BC的長(zhǎng)為1米,底座BC與支架AC所成的角∠ACB60°,點(diǎn)H在支架AF上,籃板底部支架EHBC,EFEH于點(diǎn)E,已知AH長(zhǎng)米,HF長(zhǎng)米,HE長(zhǎng)1米.

(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).

(2)求籃板底部點(diǎn)E到地面的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,BC為⊙O的弦,過(guò)O點(diǎn)作ODBC,交⊙O的切線(xiàn)CD于點(diǎn)D,交⊙O于點(diǎn)E,連接ACAE,且AEBC交于點(diǎn)F

1)連接BD,求證:BD是⊙O的切線(xiàn);

2)若AFEF=21,求tanCAF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案