【題目】如圖,已知拋物線y=ax2+ x+c與x軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4與x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+ x+c上的一動(dòng)點(diǎn),過點(diǎn)P作PE⊥x軸,垂足為E,交直線l于點(diǎn)F.

(1)試求該拋物線表達(dá)式;
(2)如圖(1),四邊形PCOF是平行四邊形,求P點(diǎn)的坐標(biāo);
(3)如圖(2),過點(diǎn)P作PH⊥y軸,垂足為H,連接AC.

①求證:△ACD是直角三角形;
②試問當(dāng)P點(diǎn)橫坐標(biāo)為何值時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似?

【答案】
(1)

解:由題意得: ,解得:

∴拋物線的表達(dá)式為y= x2+ x﹣4.


(2)

解:設(shè)P(m, m2+ m﹣4),則F(m,﹣ m﹣4).

∴PF=(﹣ m﹣4)﹣( m2+ m﹣4)=﹣ m2 m.

∵PE⊥x軸,

∴PF∥OC.

∴PF=OC時(shí),四邊形PCOF是平行四邊形.

∴﹣ m2 m=4,解得:m=﹣ 或m=﹣8.

當(dāng)m=﹣ 時(shí), m2+ m﹣4=﹣

當(dāng)m=﹣8時(shí), m2+ m﹣4=﹣4.

∴點(diǎn)P的坐標(biāo)為(﹣ ,﹣ )或(﹣8,﹣4).


(3)

解:①證明:把y=0代入y=﹣ x﹣4得:﹣ x﹣4=0,解得:x=﹣8.

∴D(﹣8,0).

∴OD=8.

∵A(2,0),C(0,﹣4),

∴AD=2﹣(﹣8)=10.

由兩點(diǎn)間的距離公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,

∴AC2+CD2=AD2

∴△ACD是直角三角形,且∠ACD=90°.

②由①得∠ACD=90°.

當(dāng)△ACD∽△CHP時(shí), = ,即 = =

解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.

當(dāng)△ACD∽△PHC時(shí), = ,即 = 或即 =

解得:n=0(舍去)或n=2或n=﹣18.

綜上所述,點(diǎn)P的橫坐標(biāo)為﹣5.5或﹣10.5或2或﹣18時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似.


【解析】(1)將點(diǎn)A和點(diǎn)C的坐標(biāo)代入拋物線的解析式可得到關(guān)于a、c的方程組,然后解方程組求得a、c的值即可;(2)設(shè)P(m, m2+ m﹣4),則F(m,﹣ m﹣4),則PF=﹣ m2 m,當(dāng)PF=OC時(shí),四邊形PCOF是平行四邊形,然后依據(jù)PF=OC列方程求解即可;(3)①先求得點(diǎn)D的坐標(biāo),然后再求得AC、DC、AD的長,最后依據(jù)勾股定理的逆定理求解即可;②分為△ACD∽△CHP、△ACD∽△PHC兩種情況,然后依據(jù)相似三角形對(duì)應(yīng)成比例列方程求解即可
【考點(diǎn)精析】根據(jù)題目的已知條件,利用相似三角形的應(yīng)用的相關(guān)知識(shí)可以得到問題的答案,需要掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0),與y軸交于點(diǎn)C.

(1)求此拋物線的解析式;
(2)以點(diǎn)A為圓心,作與直線BC相切的⊙A,求⊙A的半徑
(3)在直線BC上方的拋物線上任取一點(diǎn)P,連接PB,PC,請(qǐng)問:△PBC的面積是否存在最大值?若存在,求出這個(gè)最大值的此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時(shí),一個(gè)月工作25天.月工資底薪800元,另加計(jì)件工資.加工1件A型服裝計(jì)酬16元,加工1件B型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時(shí),加工3件A型服裝和1件B型服裝需7小時(shí).(工人月工資=底薪+計(jì)件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時(shí)?
(2)一段時(shí)間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號(hào)的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請(qǐng)你運(yùn)用所學(xué)知識(shí)判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:4sin60°﹣( ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報(bào)社為了解市民對(duì)“社會(huì)主義核心價(jià)值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個(gè)等級(jí),并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)這次調(diào)查的市民人數(shù)為人,m= , n=;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該市約有市民100000人,請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市大約有多少人對(duì)“社會(huì)主義核心價(jià)值觀”達(dá)到“A.非常了解”的程度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形ABCDEF的內(nèi)角都相等,∠DAB=60°,AB=DE,則下列結(jié)論成立的個(gè)數(shù)是( )
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四邊形ACDF是平行四邊形;⑤六邊形ABCDEF既是中心對(duì)稱圖形,又是軸對(duì)稱圖形.

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,規(guī)定:拋物線y=a(x﹣h)2+k的伴隨直線為y=a(x﹣h)+k.例如:拋物線y=2(x+1)2﹣3的伴隨直線為y=2(x+1)﹣3,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線y=(x+1)2﹣4的頂點(diǎn)坐標(biāo)為 , 伴隨直線為 , 拋物線y=(x+1)2﹣4與其伴隨直線的交點(diǎn)坐標(biāo)為;
(2)如圖,頂點(diǎn)在第一象限的拋物線y=m(x﹣1)2﹣4m與其伴隨直線相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與x軸交于點(diǎn)C,D.
①若∠CAB=90°,求m的值;
②如果點(diǎn)P(x,y)是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),△PBC的面積記為S,當(dāng)S取得最大值 時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個(gè)動(dòng)點(diǎn),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D變化的過程中,線段BE的最小值是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)O出發(fā),向點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以 個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)求拋物線的解析式;
(2)問:當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo);
(4)設(shè)拋物線頂點(diǎn)為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點(diǎn)的三角形與以O(shè),B,P為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案