【題目】如圖,在中,點(diǎn)D、E、F分別在邊、、上,且,.下列四種說法:

四邊形是平行四邊形;如果,那么四邊形是矩形;

如果平分,那么四邊形是菱形;

如果,那么四邊形是菱形.

其中,正確的有 .(只填寫序號)

【答案】①②③④

【解析】根據(jù)平行四邊形、矩形、菱形的判定方法進(jìn)行解答.

解答:解:①∵DECA,DFBA,
四邊形AEDF是平行四邊形;故正確;
BAC=90°,則平行四邊形AEDF是矩形;故正確;
若AD平分BAC,則DE=DF;
所以平行四邊形是菱形;故正確;
若ADBC,AB=AC;
根據(jù)等腰三角形三線合一的性質(zhì)知:DA平分BAC;
知:此時(shí)平行四邊形AEDF是菱形;故正確;
所以正確的結(jié)論是①②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定兩數(shù)ab之間的一種運(yùn)算,記作(ab);如果acb,那么(a,b)=c,例如:因?yàn)?/span>238,所以(2,8)=3

1)根據(jù)上述規(guī)定,填空:(381)=   ,(﹣,﹣)=   ,(2,(2,256))=   

2)若(3,4+36)=(3,x),求x的值;

3)證明:(2,3+2,5)=(8,3375).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校中午學(xué)生用餐比較擁擠,為建議學(xué)校分年級錯(cuò)時(shí)用餐,李老師帶領(lǐng)數(shù)學(xué)學(xué)習(xí)小組在某天隨機(jī)調(diào)查了部分學(xué)生,統(tǒng)計(jì)了他們從下課到就餐結(jié)束所用的時(shí)間,并繪制成統(tǒng)計(jì)表和如圖所示的不完整統(tǒng)計(jì)圖.

根據(jù)以上提供的信息,解答下列問題:

1)表中a=_____,b=_____,c=_____,補(bǔ)全頻數(shù)分布直方圖;

2)此次調(diào)查中,中位數(shù)所在的時(shí)間段是_____min

時(shí)間分段/min

頻(人)數(shù)

百分比

10≤x<15

8

20%

15≤x<20

14

a

20≤x<25

10

25%

25≤x<30

b

12.50%

30≤x<35

3

7.50%

合計(jì)

c

100%

3)這所學(xué)校共有1200人,試估算從下課到就餐結(jié)束所用時(shí)間不少于20min的共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平行四邊形ABCD中,對角線AC,BD交于點(diǎn)O,EF過點(diǎn)O,并與AD,BC分別交于點(diǎn)E,F(xiàn),已知AE=3,BF=5

(1)求BC的長;

(2)如果兩條對角線長的和是20,求三角形AOD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如果一個(gè)三角形一條邊上的高等于這條邊,那么這個(gè)三角形叫做等高底三角形,這條邊叫做這個(gè)三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線的對稱圖形得到A'BC,連結(jié)AA′交直線BC于點(diǎn)D.若點(diǎn)BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點(diǎn)A在直線l2上,有一邊的長是BC倍.將ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)45°得到A'B'C,A′C所在直線交l2于點(diǎn)D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP5,M,N分別是射線OAOB上的動(dòng)點(diǎn),若△PMN周長的最小值為5,則∠AOB的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B,C,E是同一直線上的三個(gè)點(diǎn),四邊形ABCD與四邊形CEFG都是正方形.連接BG,DE.

(1)觀察猜想BG與DE之間的大小關(guān)系,并證明你的結(jié)論.

(2)圖中是否存在通過旋轉(zhuǎn)能夠互相重合的兩個(gè)三角形?若存在,請指出,并說出旋轉(zhuǎn)過程;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃在“十周年”慶典當(dāng)天開展購物抽獎(jiǎng)活動(dòng),凡當(dāng)天在該超市購物的顧客,均有一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:如圖,將圓形轉(zhuǎn)盤平均分成四個(gè)扇形,分別標(biāo)上1,2,3,4四個(gè)數(shù)字,抽獎(jiǎng)?wù)哌B續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,當(dāng)每次轉(zhuǎn)盤停止后指針?biāo)干刃蝺?nèi)的數(shù)字為每次所得的數(shù)(若指針指在分界線時(shí)重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時(shí),返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時(shí),返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時(shí),返現(xiàn)金10元.某顧客參加一次抽獎(jiǎng),能獲得返還現(xiàn)金的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,真命題的個(gè)數(shù)有(

①數(shù)軸上的點(diǎn)和有理數(shù)是一一對應(yīng)的;

中,已知兩邊長分別是34,則第三條邊長為5;

③在平面直角坐標(biāo)系中點(diǎn)(2,-3)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)是(-2-3);

④兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案