如圖,已知直線分別與y軸,x軸交于A,B兩點(diǎn),點(diǎn)M在y軸上,以點(diǎn)M為圓心的圓M與直線AB相切于點(diǎn)D,連結(jié)MD.
(1)求證:∽;
(2)如果圓M的半徑為,請求出點(diǎn)M的坐標(biāo),并寫出以為頂點(diǎn),且過點(diǎn)M的拋物線的解析式;
(3)在(2)的條件下,試問此拋物線上是否存在點(diǎn)P,使得以P、A、M三點(diǎn)為頂點(diǎn)的三角形與相似,如果存在,請求出所有符合條件的點(diǎn)P的坐標(biāo),如果不存在,請說明理由。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
a | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知直線分別與y軸,x軸交于A,B兩點(diǎn),點(diǎn)M在y軸上,以點(diǎn)M為圓心的圓M與直線AB相切于點(diǎn)D,連結(jié)MD.
(1)求證:∽;
(2)如果圓M的半徑為,請求出點(diǎn)M的坐標(biāo),并寫出以為頂點(diǎn),且過點(diǎn)M的拋物線的解析式;
(3)在(2)的條件下,試問此拋物線上是否存在點(diǎn)P,使得以P、A、M三點(diǎn)為頂點(diǎn)的三角形與相似,如果存在,請求出所有符合條件的點(diǎn)P的坐標(biāo),如果不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:解答題
(2013年四川資陽9分)如圖,已知直線l分別與x軸、y軸交于A,B兩點(diǎn),與雙曲線(a≠0,x>0)分別交于D、E兩點(diǎn).
(1)若點(diǎn)D的坐標(biāo)為(4,1),點(diǎn)E的坐標(biāo)為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個單位,當(dāng)m為何值時,直線l與雙曲線有且只有一個交點(diǎn)?
(2)假設(shè)點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)D為線段AB的n等分點(diǎn),請直接寫出b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江天門市九年級三輪考試數(shù)學(xué)卷(一)(解析版) 題型:解答題
如圖,已知直線分別與y軸,x軸交于A,B兩點(diǎn),點(diǎn)M在y軸上,以點(diǎn)M為圓心的圓M與直線AB相切于點(diǎn)D,連結(jié)MD.
(1)求證:∽;
(2)如果圓M的半徑為,請求出點(diǎn)M的坐標(biāo),并寫出以為頂點(diǎn),且過點(diǎn)M的拋物線的解析式;
(3)在(2)的條件下,試問此拋物線上是否存在點(diǎn)P,使得以P、A、M三點(diǎn)為頂點(diǎn)的三角形與相似,如果存在,請求出所有符合條件的點(diǎn)P的坐標(biāo),如果不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com