如圖(1),已知正方形ABCD在直線MN的上方,B、C在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證△ADG≌△ABE;
(2)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)E由B向C運(yùn)動時,∠FCN的大小是否保持不變?若∠FCN的大小不變,請用含a、b的代數(shù)表示tan∠FCN的值;若∠FCN的大小發(fā)生改變,請舉例說明.
分析:(1)根據(jù)三角形判定方法進(jìn)行證明即可.
(2)通過構(gòu)建直角三角形來求度數(shù),作FH⊥MN于H,∠FCH的正切值就是FH:CH.
解答:(1)證明:∵四邊形ABCD和四邊形AEFG是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG,
在△BAE和△DAG中
AB=AD
∠BAE=∠DAG
AE=AG

∴△BAE≌△DAG(SAS).

(2)解:當(dāng)點(diǎn)E由B向C運(yùn)動時,∠FCN的大小總保持不變,
理由是:作FH⊥MN于H,
由已知可得∠EAG=∠BAD=∠AEF=90°,
結(jié)合(1)得∠FEH=∠BAE=∠DAG,
又∵G在射線CD上,
∠GDA=∠EHF=∠EBA=90°,
在△GAD和△EFH中
∠GDA=∠FHE
∠DAG=∠FEH
AG=EF

∴△GAD≌△EFH(AAS),
∵∠ABE=∠EHF,∠BAE=∠FEH,
∴△EFH∽△ABE,
∴EH=AD=BC=b,
∴CH=BE,
∴1
EH
AB
=
FH
BE
=
FH
CH
;
在Rt△FEH中,tan∠FCN=
FH
CH
=
EH
AB
=
b
a
,
∴當(dāng)點(diǎn)E由B向C運(yùn)動時,∠FCN的大小總保持不變,tan∠FCN=
b
a
點(diǎn)評:本題考查了正方形的性質(zhì)及全等三角形的判定方法等知識點(diǎn)的綜合運(yùn)用,其重點(diǎn)是通過證三角形全等或相似來得出線段的相等或成比例.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),已知,矩形ABCD的邊AD=3,對角線長為5,將矩形ABCD置于直角坐標(biāo)系內(nèi),點(diǎn)C與原點(diǎn)O重合,且反比例函數(shù)的圖象的一個分支位于第一象限.
①求圖(1)中,點(diǎn)A的坐標(biāo)是多少?
②若矩形ABCD從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點(diǎn)A剛好落在反比例函數(shù)的圖象上,如圖(2),求反比例函數(shù)的表達(dá)式.
③矩形ABCD繼續(xù)向x軸的正方向移動,AB、AD與反比例函數(shù)圖象分別交于P、Q兩點(diǎn),如圖(3),設(shè)移動總時間為t(1<t<5),分別寫出△PBC的面積S1、△QDC的面積S2與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S2=
107
S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲所示,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動,設(shè)它們運(yùn)動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖乙所示).
①當(dāng)t=
52
時,判斷點(diǎn)P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點(diǎn),與原拋物線交于點(diǎn)Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖(1),已知,矩形ABCD的邊AD=3,對角線長為5,將矩形ABCD置于直角坐標(biāo)系內(nèi),點(diǎn)C與原點(diǎn)O重合,且反比例函數(shù)的圖象的一個分支位于第一象限.
①求圖(1)中,點(diǎn)A的坐標(biāo)是多少?
②若矩形ABCD從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點(diǎn)A剛好落在反比例函數(shù)的圖象上,如圖(2),求反比例函數(shù)的表達(dá)式.
③矩形ABCD繼續(xù)向x軸的正方向移動,AB、AD與反比例函數(shù)圖象分別交于P、Q兩點(diǎn),如圖(3),設(shè)移動總時間為t(1<t<5),分別寫出△PBC的面積S1、△QDC的面積S2與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S2=數(shù)學(xué)公式S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省畢節(jié)地區(qū)太來中學(xué)九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1),已知,矩形ABCD的邊AD=3,對角線長為5,將矩形ABCD置于直角坐標(biāo)系內(nèi),點(diǎn)C與原點(diǎn)O重合,且反比例函數(shù)的圖象的一個分支位于第一象限.
①求圖(1)中,點(diǎn)A的坐標(biāo)是多少?
②若矩形ABCD從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點(diǎn)A剛好落在反比例函數(shù)的圖象上,如圖(2),求反比例函數(shù)的表達(dá)式.
③矩形ABCD繼續(xù)向x軸的正方向移動,AB、AD與反比例函數(shù)圖象分別交于P、Q兩點(diǎn),如圖(3),設(shè)移動總時間為t(1<t<5),分別寫出△PBC的面積S1、△QDC的面積S2與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S2=S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省衢州市江山二中九年級(上)第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖甲所示,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動,設(shè)它們運(yùn)動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖乙所示).
①當(dāng)時,判斷點(diǎn)P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點(diǎn),與原拋物線交于點(diǎn)Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案