如圖,在△ABC中,點(diǎn)E在AB上,點(diǎn)D在BC上,BD=BE,∠BAD=∠BCE,AD與CE相交于點(diǎn)F,試判斷△AFC的形狀,并說(shuō)明理由.

【答案】分析:要判斷△AFC的形狀,可通過(guò)判斷角的關(guān)系來(lái)得出結(jié)論,那么就要看∠FAC和∠FCA的關(guān)系.因?yàn)椤螧AD=∠BCE,因此我們只比較∠BAC和∠BCA的關(guān)系即可.根據(jù)題中的條件:BD=BE,∠BAD=∠BCE,△BDA和△BEC又有一個(gè)公共角,因此兩三角形全等,那么AB=AC,于是∠BAC=∠BCA,由此便可推導(dǎo)出∠FAC=∠FCA,那么三角形AFC應(yīng)該是個(gè)等腰三角形.
解答:解:△AFC是等腰三角形.理由如下:
在△BAD與△BCE中,
∵∠B=∠B(公共角),∠BAD=∠BCE,BD=BE,
∴△BAD≌△BCE(AAS),
∴BA=BC,∠BAC=∠BCA,
∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.
∴AF=CF,
∴△AFC是等腰三角形.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì)及等腰三角形的判定等知識(shí)點(diǎn),利用全等三角形來(lái)得出角相等是本題解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案